Folds5x2_pp.xlsx

时间: 2023-09-16 09:16:11 浏览: 52
`Folds5x2_pp.xlsx` 是一个 Excel 文件,其中包含了一组关于空气污染数据的实验结果。这组数据是针对五个不同的特征进行的二元分类实验,每个特征都进行了五次重复实验。 每个特征的数据包含了两列:第一列是特征的值,第二列是该特征对应的分类结果(0 或 1)。这个数据集的数据量比较小,可以用于测试和学习分类算法。 该数据集的完整信息可以参考 UCI Machine Learning Repository 上的说明:https://archive.ics.uci.edu/ml/datasets/Air+Quality 如果你需要使用这个数据集,可以使用 Excel 或 Python 中的 Pandas 库进行读取和处理。
相关问题

for i in indices: X_train_folds.append(X_train[i]) y_train_folds.append(y_train[i])

这段代码使用了一个循环来遍历 `indices` 列表,并根据每个索引值将对应的元素添加到 `X_train_folds` 和 `y_train_folds` 列表中。 假设 `indices` 是一个包含整数索引的列表,`X_train` 和 `y_train` 是两个数据集。代码示例如下: ```python indices = [0, 1, 2, 3, 4] # 索引列表 X_train = ['data1', 'data2', 'data3', 'data4', 'data5'] # X_train 数据集 y_train = ['label1', 'label2', 'label3', 'label4', 'label5'] # y_train 数据集 X_train_folds = [] # 存储分割后的 X_train 数据集 y_train_folds = [] # 存储分割后的 y_train 数据集 for i in indices: X_train_folds.append(X_train[i]) y_train_folds.append(y_train[i]) print(X_train_folds) print(y_train_folds) ``` 以上代码将根据 `indices` 列表中的索引值,将相应的元素添加到 `X_train_folds` 和 `y_train_folds` 列表中。输出结果为: ``` ['data1', 'data2', 'data3', 'data4', 'data5'] ['label1', 'label2', 'label3', 'label4', 'label5'] ``` 请注意,如果 `indices` 中的索引值超出了数据集的范围,将会引发索引错误。

train = data[data['isDefault'].notna()] test = data[data['isDefault'].isna()] y = train['isDefault'] folds = KFold(n_splits=5, shuffle=True, random_state=546789) test_preds = LGBModel(train, test, y, folds) test_preds.rename({'loan_id': 'id'}, axis=1)[['id', 'isDefault']].to_csv('/home/aistudio/work/submit_example.csv', index=None)怎么查看保存的csv文件

你可以使用Python中的pandas库来读取和查看csv文件。可以使用以下代码读取csv文件并将其存储在一个变量中: ``` import pandas as pd df = pd.read_csv('/home/aistudio/work/submit_example.csv') ``` 然后你可以使用以下代码来查看数据框的前几行: ``` df.head() ``` 或者你也可以使用以下代码来查看数据框的所有行: ``` print(df) ```

相关推荐

Traceback (most recent call last): File "D:/pythonProject/DATA/jaffeim.ages(1)/test2.py", line 18, in <module> scores = cross_val_score(knn, X, y, cv=5, scoring='accuracy') File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_validation.py", line 520, in cross_val_score error_score=error_score, File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_validation.py", line 283, in cross_validate for train, test in cv.split(X, y, groups) File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\joblib\parallel.py", line 1043, in __call__ if self.dispatch_one_batch(iterator): File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\joblib\parallel.py", line 833, in dispatch_one_batch islice = list(itertools.islice(iterator, big_batch_size)) File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_validation.py", line 268, in <genexpr> delayed(_fit_and_score)( File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_split.py", line 340, in split for train, test in super().split(X, y, groups): File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_split.py", line 86, in split for test_index in self._iter_test_masks(X, y, groups): File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_split.py", line 709, in _iter_test_masks test_folds = self._make_test_folds(X, y) File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\sklearn\model_selection\_split.py", line 673, in _make_test_folds " number of members in each class." % (self.n_splits) ValueError: n_splits=5 cannot be greater than the number of members in each class. 进程已结束,退出代码1

解释以下代码:def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test

def cv_model(clf, train_x, train_y, test_x, clf_name='lgb'): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) train = np.zeros(train_x.shape[0]) test = np.zeros(test_x.shape[0]) cv_scores = [] for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************ {} *************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'min_child_weight': 5, 'num_leaves': 2**6, 'lambda_l2': 10, 'feature_fraction': 0.9, 'bagging_fraction': 0.9, 'bagging_freq': 4, 'learning_rate': 0.01, 'seed': 2021, 'nthread': 28, 'n_jobs':-1, 'silent': True, 'verbose': -1, } model = clf.train(params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], #categorical_feature = categorical_feature, verbose_eval=500,early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) train[valid_index] = val_pred test += test_pred / kf.n_splits cv_scores.append(roc_auc_score(val_y, val_pred)) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) return train, test lgb_train, lgb_test = cv_model(lgb, x_train, y_train, x_test)这段代码什么意思,分类标签为0和1,属于二分类,预测结果点击率的数值是怎么来的

最新推荐

recommend-type

关于多元线性回归分析——Python&SPSS

data = pd.read_csv('Folds5x2_pp.csv') data.head() 会看到数据如下所示: 这份数据代表了一个循环发电厂,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结...
recommend-type

WX小程序源码小游戏类

WX小程序源码小游戏类提取方式是百度网盘分享地址
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。