hdfs将本地的text文件转为parquet写入hdfs
时间: 2024-04-18 19:08:57 浏览: 150
datax hdfswriter改造,支持写入parquet格式文件
可以使用Apache Spark来实现将本地的text文件转为parquet并写入HDFS中。具体步骤如下:
1. 创建SparkSession对象
```python
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.appName("Text to Parquet") \
.master("local[*]") \
.getOrCreate()
```
2. 读取本地的text文件数据
```python
df = spark.read.text("file://path/to/local/text/file")
```
3. 对数据进行转换和处理
这里可以根据需要对数据进行一些转换和处理,例如对每行文本进行分词、去除停用词等操作。
```python
from pyspark.ml.feature import Tokenizer, StopWordsRemover
tokenizer = Tokenizer(inputCol="value", outputCol="words")
df = tokenizer.transform(df)
stopword_remover = StopWordsRemover(inputCol="words", outputCol="filtered_words")
df = stopword_remover.transform(df)
```
4. 将数据转为parquet格式并写入HDFS中
```python
df.write.parquet("hdfs://namenode:9000/path/to/output/parquet/file")
```
注意,在将数据写入HDFS中时,需要指定Hadoop的配置信息,例如namenode的地址、端口号等。如果没有配置Hadoop的环境变量,还需要在代码中手动设置相关配置信息,例如:
```python
spark.conf.set("spark.hadoop.fs.defaultFS", "hdfs://namenode:9000")
spark.conf.set("spark.hadoop.yarn.resourcemanager.address", "resourcemanager:8032")
```
完整的代码示例:
```python
from pyspark.sql import SparkSession
from pyspark.ml.feature import Tokenizer, StopWordsRemover
spark = SparkSession.builder \
.appName("Text to Parquet") \
.master("local[*]") \
.getOrCreate()
# 读取本地的text文件数据
df = spark.read.text("file://path/to/local/text/file")
# 对数据进行转换和处理
tokenizer = Tokenizer(inputCol="value", outputCol="words")
df = tokenizer.transform(df)
stopword_remover = StopWordsRemover(inputCol="words", outputCol="filtered_words")
df = stopword_remover.transform(df)
# 将数据转为parquet格式并写入HDFS中
spark.conf.set("spark.hadoop.fs.defaultFS", "hdfs://namenode:9000")
spark.conf.set("spark.hadoop.yarn.resourcemanager.address", "resourcemanager:8032")
df.write.parquet("hdfs://namenode:9000/path/to/output/parquet/file")
spark.stop()
```
阅读全文