torch::from_blob用法
时间: 2023-10-09 21:13:50 浏览: 309
`torch::from_blob` 是 PyTorch C++ API 中用于将一段内存转换为 `torch::Tensor` 的函数。
它的使用方法如下:
```c++
#include <torch/torch.h>
int main() {
float data[] = {1, 2, 3, 4, 5, 6};
auto tensor = torch::from_blob(data, {2, 3});
std::cout << tensor << std::endl;
return 0;
}
```
`from_blob` 函数接收两个参数:
- `data`:需要转换为 `torch::Tensor` 的内存地址。
- `sizes`:一个整数 vector,表示该内存块对应的 tensor 的形状。
注意:
- `from_blob` 函数不会拷贝数据,而是将数据指针包装成 tensor。因此,如果内存块在 tensor 生命周期内被释放,tensor 将会变得无效。
- `from_blob` 函数默认将数据按照 C 语言风格的连续内存块存储,即按照行优先的顺序存储。如果内存块的存储方式不同,需要使用 `torch::TensorOptions` 重新指定存储方式。
- `from_blob` 函数默认将数据类型解释为 float,如果需要指定其他数据类型,可以使用 `torch::TensorOptions` 指定数据类型。
相关问题
class FocalLoss(nn.Module): # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(FocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss
这个代码实现了一个 Focal Loss 损失函数,它是对二分类问题中的交叉熵损失函数的一种改进。它主要通过增加一个可调的超参数 $\gamma$,来调整难易样本的权重,从而解决类别不平衡问题。在代码中,它被实现为一个 PyTorch 模块,它的 forward 方法接受两个张量,即预测值和真实值,并返回计算出来的损失值。在实现中,它首先对传入的 loss_fcn 进行了封装,将其 reduction 属性设为 'none',然后在 forward 方法中使用封装后的 loss_fcn 计算出二分类交叉熵损失,接着使用预测值和真实值计算出概率值,根据概率值和超参数 $\gamma$ 计算出一个调制因子,最后将原始损失值乘以调制因子和一个可调的超参数 $\alpha$,从而得到最终的 Focal Loss 损失。
class VoxelsSumming(torch.autograd.Function): """Adapted from https://github.com/nv-tlabs/lift-splat-shoot/blob/master/src/tools.py#L193""" @staticmethod def forward(ctx, x, geometry, ranks): """The features `x` and `geometry` are ranked by voxel positions.""" # Cumulative sum of all features. x = x.cumsum(0) # Indicates the change of voxel. mask = torch.ones(x.shape[0], device=x.device, dtype=torch.bool) mask[:-1] = ranks[1:] != ranks[:-1] x, geometry = x[mask], geometry[mask] # Calculate sum of features within a voxel. x = torch.cat((x[:1], x[1:] - x[:-1])) ctx.save_for_backward(mask) ctx.mark_non_differentiable(geometry) return x, geometry @staticmethod def backward(ctx, grad_x, grad_geometry): (mask,) = ctx.saved_tensors # Since the operation is summing, we simply need to send gradient # to all elements that were part of the summation process. indices = torch.cumsum(mask, 0) indices[mask] -= 1 output_grad = grad_x[indices] return output_grad, None, None这个方法是如何计算BEV的?
这个方法是用来计算Bird's Eye View (BEV)的。BEV是一种将三维点云投影到二维平面上的方法,常用于自动驾驶领域。该方法中,输入的`x`和`geometry`都是按照体素位置进行排列的。在前向传递中,`x`进行了累加和操作,然后通过比较相邻的`ranks`元素创建了一个布尔掩码`mask`。使用掩码可以将`x`和`geometry`中相邻的体素合并,然后计算每个体素中所有特征值的总和。在后向传递过程中,由于操作是求和操作,因此只需要将梯度发送给参与求和过程的所有元素即可。
阅读全文