在resnet中如何实现dropblock
时间: 2023-06-15 11:08:12 浏览: 141
DropBlock是一种正则化技术,可以在深度神经网络中减少过拟合。在ResNet中,DropBlock可以通过以下步骤实现:
1. 定义DropBlock的参数:DropBlock的参数包括DropBlock的概率、DropBlock的大小和DropBlock的步幅。DropBlock的概率表示DropBlock将被应用的概率,DropBlock的大小表示DropBlock的大小(以像素为单位),DropBlock的步幅表示DropBlock在图像中移动的步幅(以像素为单位)。
2. 计算DropBlock掩码:对于每个卷积层,DropBlock掩码是通过计算每个块的保留概率来生成的。保留概率是根据DropBlock的概率、DropBlock的大小和DropBlock的步幅计算出来的,可以使用随机数生成器来生成。
3. 应用DropBlock:将DropBlock掩码应用到卷积层的输出上,将DropBlock掩码与卷积层的输出相乘,以防止DropBlock区域的信息传递。
4. 重新缩放输出:由于DropBlock区域的信息传递被阻止,因此卷积层的输出需要进行重新缩放,以保持相同的数量级。
需要注意的是,DropBlock的实现需要谨慎调整参数,以避免过度拟合或欠拟合。
相关问题
我想讲resnet和Swin-Transformer结合起来 先用resnet和se注意力模块 在用swin transformer。我用的是pytorch。请给下代码
以下是基于PyTorch实现的ResNet和Swin Transformer的结合代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.resnet import conv1x1, conv3x3, BasicBlock, Bottleneck
from timm.models.vision_transformer import Mlp, PatchEmbed, Attention, Block
class ResNetSwinTransformer(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dim=96, depth=12, num_heads=8, mlp_ratio=4., qkv_bias=True,
qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1):
super().__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
# ResNet stem
self.stem = nn.Sequential(
conv3x3(in_chans, 64, stride=2),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
conv3x3(64, 64),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
conv3x3(64, 128)
)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# Swin Transformer
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=128, embed_dim=embed_dim)
self.pos_embed = nn.Parameter(torch.zeros(1, self.patch_embed.num_patches, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
self.blocks = nn.ModuleList([
SwinTransformerBlock(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
)
for i in range(depth)
])
self.norm = nn.LayerNorm(embed_dim)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(embed_dim, num_classes)
def forward_features(self, x):
# ResNet stem
x = self.stem(x)
x = self.maxpool(x)
# Swin Transformer
x = self.patch_embed(x)
x = x + self.pos_embed
x = self.pos_drop(x)
for block in self.blocks:
x = block(x)
x = self.norm(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.avgpool(x).flatten(1)
x = self.fc(x)
return x
class SwinTransformerBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop=0., attn_drop=0., drop_path=None):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop
)
self.drop_path = drop_path
self.norm2 = nn.LayerNorm(dim)
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=nn.GELU,
drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
```
其中,`ResNetSwinTransformer`类实现了ResNet和Swin Transformer的结合,包括ResNet的stem和Swin Transformer的patch embedding、position embedding、Transformer block和layer normalization。
`SwinTransformerBlock`类实现了Swin Transformer中的Transformer block,包括multi-head attention、feedforward network和layer normalization。其中,通过DropPath实现了stochastic depth的效果。
你可以根据自己的需求修改一些超参数或者调整网络结构,例如修改`num_classes`、`depth`、`embed_dim`、`num_heads`、`mlp_ratio`、`drop_rate`、`attn_drop_rate`、`drop_path_rate`等。
使用mindspore框架使用resnet18在fer2013数据集上进行图像识别
好的,以下是使用MindSpore框架在FER2013数据集上进行图像识别的步骤:
1. 下载FER2013数据集:可以到Kaggle上下载fer2013.csv文件,并将其放在指定的目录下。
2. 数据处理:使用pandas库读取fer2013.csv文件,然后将数据集分成训练集和测试集。可以使用sklearn库的train_test_split函数来分割数据集。
3. 数据增强:为了提高模型的泛化能力,我们可以使用数据增强技术。MindSpore框架提供了丰富的数据增强操作,如RandomCrop、RandomHorizontalFlip等。
4. 搭建ResNet18模型:使用MindSpore框架搭建ResNet18模型,可以使用MindSpore提供的Model类来实现。
5. 模型训练:使用MindSpore框架进行模型训练,可以使用MindSpore提供的Model.train函数来实现。
6. 模型测试:使用测试集对模型进行测试,可以使用MindSpore提供的Model.eval函数来实现。
7. 模型保存:使用MindSpore框架保存训练好的模型,可以使用MindSpore提供的Model.save_checkpoint函数来实现。
下面是一个使用MindSpore框架在FER2013数据集上进行图像识别的示例代码:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
import mindspore.nn as nn
import mindspore.ops.operations as P
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, save_checkpoint
# 1. 下载FER2013数据集
# 2. 数据处理
data = pd.read_csv('fer2013.csv')
pixels = data['pixels'].tolist()
faces = []
for pixel_sequence in pixels:
face = [int(pixel) for pixel in pixel_sequence.split(' ')]
face = np.asarray(face).reshape(48, 48)
faces.append(face.astype(np.uint8))
X = np.asarray(faces)
y = pd.get_dummies(data['emotion']).values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
# 3. 数据增强
train_transform = CV.Compose([
CV.RandomCrop((44, 44)),
CV.RandomHorizontalFlip(prob=0.5),
CV.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
CV.RandomRotation(30),
CV.Rescale(1.0 / 255.0, 0.0)
])
test_transform = CV.Compose([
CV.Rescale(1.0 / 255.0, 0.0)
])
# 4. 搭建ResNet18模型
class ResNet18(nn.Cell):
def __init__(self):
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, pad_mode='pad')
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='valid')
self.layer1 = nn.SequentialCell(
nn.ResidualBlock(64, 64),
nn.ResidualBlock(64, 64)
)
self.layer2 = nn.SequentialCell(
nn.ResidualBlock(64, 128, stride=2),
nn.ResidualBlock(128, 128)
)
self.layer3 = nn.SequentialCell(
nn.ResidualBlock(128, 256, stride=2),
nn.ResidualBlock(256, 256)
)
self.layer4 = nn.SequentialCell(
nn.ResidualBlock(256, 512, stride=2),
nn.ResidualBlock(512, 512)
)
self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1, pad_mode='valid')
self.flatten = nn.Flatten()
self.fc = nn.Dense(512, 7)
def construct(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = self.flatten(x)
x = self.fc(x)
return x
# 5. 模型训练
batch_size = 32
train_dataset = ds.NumpySlicesDataset({"image": X_train, "label": y_train}, shuffle=True)
train_dataset = train_dataset.map(input_columns=["image"], operations=train_transform, num_parallel_workers=4)
train_dataset = train_dataset.batch(batch_size, drop_remainder=True)
test_dataset = ds.NumpySlicesDataset({"image": X_test, "label": y_test})
test_dataset = test_dataset.map(input_columns=["image"], operations=test_transform, num_parallel_workers=4)
test_dataset = test_dataset.batch(batch_size, drop_remainder=True)
net = ResNet18()
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), 0.01, 0.9)
model = nn.Model(net, loss_fn, opt, metrics={"acc"})
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
model.train(10, train_dataset)
# 6. 模型测试
model.eval(test_dataset)
# 7. 模型保存
save_checkpoint(model.train_network, "resnet18.ckpt")
```
这是一个简单的示例代码,您可以根据实际情况进行修改。
阅读全文