cv2.rectangle用法
时间: 2024-01-31 13:10:43 浏览: 155
cv2.rectangle()函数是OpenCV库中用于绘制矩形框的函数。它可以在图像上绘制一个矩形框,可以用来标记或突出显示感兴趣的区域。下面是一个使用cv2.rectangle()函数的示例:
```python
import cv2
# 读取图片
image = cv2.imread('image.jpg')
# 定义矩形框的左上角和右下角坐标
start_point = (50, 50)
end_point = (200, 200)
# 定义矩形框的颜色和线宽
color = (0, 255, 0) # 绿色
thickness = 2
# 在图像上绘制矩形框
cv2.rectangle(image, start_point, end_point, color, thickness)
# 显示绘制了矩形框的图像
cv2.imshow('Rectangle', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在上面的示例中,我们首先使用cv2.imread()函数读取了一张图片,然后定义了矩形框的左上角和右下角坐标,以及矩形框的颜色和线宽。最后,使用cv2.rectangle()函数在图像上绘制了矩形框,并使用cv2.imshow()函数显示了绘制了矩形框的图像。
相关问题
import cv2 # 初始化背景建模器 fgbg = cv2.createBackgroundSubtractorMOG2() # 读取视频文件 cap = cv2.VideoCapture('w5.mp4') while True: # 读取一帧图像 ret, frame = cap.read() if not ret: break # 对图像进行背景建模 fgmask = fgbg.apply(frame) # 缩放比例 scale_percent = 50 # 计算缩放后的新尺寸 width = int(frame.shape[1] * scale_percent / 100) height = int(frame.shape[0] * scale_percent / 100) dim = (width, height) # 缩放图像 frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA) # 对二值化结果进行形态学操作 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 寻找轮廓并绘制矩形框 contours, hierarchy = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: area = cv2.contourArea(contour) if area > 1500: # 去除过小的噪点 x, y, w, h = cv2.boundingRect(contour) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) # 显示结果 cv2.imshow('frame', frame) cv2.imshow('fgmask', fgmask) if cv2.waitKey(30) == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows()能给这段程序加一个目标跟踪吗
可以给这段程序加上目标跟踪。一种简单的方法是使用OpenCV的cv2.Tracker类。在循环中,可以使用cv2.Tracker类来跟踪检测到的目标。以下是修改后的代码示例:
import cv2
# 初始化背景建模器
fgbg = cv2.createBackgroundSubtractorMOG2()
# 读取视频文件
cap = cv2.VideoCapture('w5.mp4')
# 初始化跟踪器
tracker = cv2.TrackerCSRT_create()
while True:
# 读取一帧图像
ret, frame = cap.read()
if not ret:
break
# 对图像进行背景建模
fgmask = fgbg.apply(frame)
# 缩放比例
scale_percent = 50
# 计算缩放后的新尺寸
width = int(frame.shape[1] * scale_percent / 100)
height = int(frame.shape[0] * scale_percent / 100)
dim = (width, height)
# 缩放图像
frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA)
# 对二值化结果进行形态学操作
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
# 寻找轮廓并绘制矩形框
contours, hierarchy = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
area = cv2.contourArea(contour)
if area > 1500: # 去除过小的噪点
x, y, w, h = cv2.boundingRect(contour)
# 初始化跟踪器
bbox = (x, y, w, h)
tracker.init(frame, bbox)
# 更新跟踪器
success, bbox = tracker.update(frame)
# 绘制矩形框
if success:
x, y, w, h = [int(i) for i in bbox]
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
# 显示结果
cv2.imshow('frame', frame)
cv2.imshow('fgmask', fgmask)
if cv2.waitKey(30) == ord('q'):
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
回答一下代码:import numpy as np import cv2 import Products as product # 加载视频 cap = cv2.VideoCapture("../sample/1.mp4") # 变量 font = cv2.FONT_HERSHEY_SIMPLEX products = [] pid = 1 areaTh = 18000 # 获取图像width, height width = cap.get(3) height = cap.get(3) while cap.isOpened(): ret, frame = cap.read() try: # 复制图片,用于绘制 img = frame.copy() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)[1] except: print("EOF") break # 边缘检测,识别工件 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt in contours: area = cv2.contourArea(cnt) if area > areaTh: M = cv2.moments(cnt) cx = int(M['m10'] / M['m00']) cy = int(M['m01'] / M['m00']) x, y, w, h = cv2.boundingRect(cnt) new = True if cx > 100: for i in products: if abs(cx - i.getX()) <= 25 and abs(cy - i.getY()) <= 25: new = False i.updateCoords(cx, cy, x, y, w, h) if new: p = product.Product(pid, cx, cy, x, y, w, h) p.save_pic(frame) products.append(p) product.count = pid defects = p.defect_detect() pid += 1 cv2.circle(img, (cx, cy), 5, (0, 0, 255), -1) img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) for i in products: # 标记ID if i.getX() <= 600: cv2.putText(img, str(i.getId()), (i.getX(), i.getY()), font, 1.0, i.getRGB(), 1, cv2.LINE_AA) # 绘制缺陷 for j in i.defects: if j.getState() == 1: img = cv2.rectangle(img, (i.getBoundX() + j.getX(), i.getBoundY() + j.getY()), (i.getBoundX() + j.getX() + j.getW() + 5, i.getBoundY() + j.getY() + j.getH() + 5), (0, 255, 255), 1) elif j.getState() == 2: img = cv2.rectangle(img, (i.getBoundX() + j.getX(), i.getBoundY() + j.getY()), (i.getBoundX() + j.getX() + j.getW() + 5, i.getBoundY() + j.getY() + j.getH() + 5), (255, 255, 0), 1) # 绘制sum cv2.putText(img, "sum:" + str(product.count), (10, 30), font, 0.7, (255, 255, 255), 1, cv2.LINE_AA) cv2.putText(img, "scratch_sum:" + str(product.Product.scratch_sum), (10, 50), font, 0.7, (0, 255, 255), 1, cv2.LINE_AA) cv2.putText(img, "blot_sum:" + str(product.Product.blot_sum), (10, 70), font, 0.7, (255, 255, 0), 1, cv2.LINE_AA) cv2.imshow("test", img) k = cv2.waitKey(10) & 0xff if k == 27: break cv2.destroyAllWindows()
这段代码导入了三个Python模块:numpy、cv2和Products。下面是每个模块的简要说明:
1. numpy:是一个Python库,用于在Python中进行数值计算。它支持大量的数学操作和运算,如矩阵操作、线性代数、随机数生成等等。
2. cv2:是一个Python库,用于计算机视觉和图像处理。它是OpenCV(开源计算机视觉库)的Python接口,提供了许多处理图像的函数和方法。
3. Products:这是一个自定义的Python模块,它很可能包含了一些与产品相关的代码。由于我们没有看到这个模块的代码,所以不能对它做出具体的解释。
需要注意的是,这段代码中导入的模块需要在系统中预先安装好,否则会导致 ImportError 错误。如果你在运行时遇到了这个错误,你需要在终端或命令行界面中使用 pip 命令安装相应的模块。例如,要安装 numpy 模块,可以在命令行中输入:
```python
pip install numpy
```
同样的方式也适用于其他模块。
阅读全文