# k-means聚类 model = KMeans(n_clusters=30,init='k-means++',n_init=10,max_iter=50,random_state=0) model.fit(data) labels = model.labels_ # 统计每个类别标签出现的次数 counts = np.bincount(labels) # 打印每个簇中包含的样本数量 for i in range(len(counts)): print("Cluster {}: {} samples".format(i, counts[i])) #绘制折线图 for i in range(30): cluster_data = data[labels == i] mean_data = np.mean(cluster_data, axis=0) plt.plot(mean_data) plt.show()解释这段代码

时间: 2024-04-28 08:27:03 浏览: 113
这段代码实现了 k-means 聚类算法,并使用 Python 的 scikit-learn 库来实现。该算法将数据集分成了 30 个簇,每个簇中包含多个样本。对于每个簇,该代码计算了其中所有样本的均值,并绘制了簇均值的折线图。在这里,使用了 bincount 函数来统计每个类别标签出现的次数,并使用 KMeans 类来训练模型。其中,参数 n_clusters 指定了簇的数量,init 指定了初始簇中心的选取方法,n_init 指定了重复运行 k-means 算法的次数,max_iter 指定了算法的最大迭代次数,random_state 指定了随机种子。最后,使用 labels 变量来获取每个样本所属的簇标签。
相关问题

k-means聚类算法 目标检测

### K-means聚类算法在目标检测中的应用 K-means聚类算法可以用于目标检测中的锚框(anchor box)生成过程。通过分析训练集图像中标注的目标尺寸分布,利用K-means聚类找到最具代表性的几种形状作为预定义的边界框模板。 #### 锚框生成原理 为了提高模型预测精度并加快收敛速度,在设计网络结构时通常会预先设定一组不同比例和大小的基础矩形区域——即锚框。这些锚框会在特征图上滑动形成密集采样点位,进而参与后续回归操作以精确定位物体位置[^1]。 ```python import numpy as np from sklearn.cluster import KMeans def iou(box, clusters): """ 计算单个box与所有cluster之间的iou值 参数: box (array): 单个真实框 [width, height] clusters (numpy array): 所有簇中心 [[w,h],...,[wn,hn]] 返回: float: 平均IOU得分 """ x = np.minimum(clusters[:, 0], box[0]) y = np.minimum(clusters[:, 1], box[1]) intersection = x * y box_area = box[0] * box[1] cluster_area = clusters[:, 0] * clusters[:, 1] iou_ = intersection / (box_area + cluster_area - intersection) return iou_ class YOLO_Kmeans: def __init__(self, num_clusters): self.num_clusters = num_clusters self.k_means_model = None def fit(self, boxes): k_mean = KMeans(n_clusters=self.num_clusters).fit(boxes) self.k_means_model=k_mean avg_iou=np.mean([np.max(iou(x,self.k_means_model.cluster_centers_)) for x in boxes ]) print(f"Avg IOU:{avg_iou:.2f}") def get_anchor_boxes(self): anchor_boxes=sorted(self.k_means_model.cluster_centers_.tolist()) formatted_anchors=[round(w), round(h)]for w,h in anchor_boxes ] return formatted_anchors ``` 此代码片段展示了如何基于给定的真实标注框集合`boxes`来计算最优数量的锚框,并输出平均交并比(Average IOU),以及最终得到的一系列整数形式表示的标准锚框尺寸列表。

python使用sklearn对指定CSV文件进行K-means聚类并输出结果

好的,下面是一个简单的Python代码示例,使用Scikit-learn对指定的CSV文件进行K-means聚类,并输出结果: ```python import pandas as pd from sklearn.cluster import KMeans # 读取CSV文件 data = pd.read_csv('data.csv') # 获取要聚类的数据 X = data[['feature1', 'feature2', 'feature3']] # 设置K-means聚类的参数 n_clusters = 3 init = 'k-means++' max_iter = 300 # 创建K-means聚类模型并拟合数据 model = KMeans(n_clusters=n_clusters, init=init, max_iter=max_iter) model.fit(X) # 输出聚类结果 labels = model.labels_ data['label'] = labels print(data) ``` 在这个示例中,我们首先使用Pandas库读取指定的CSV文件,并获取要聚类的数据。然后,我们设置K-means聚类的参数,包括簇的数量、初始化方法和最大迭代次数等。接下来,我们使用Scikit-learn的KMeans类创建K-means聚类模型,并拟合数据。最后,我们将聚类结果输出到控制台,同时将标签添加到原始数据中。 需要注意的是,这个示例只是一个简单的演示,实际应用中可能需要对数据进行预处理和特征工程等操作,以提高聚类效果。同时,还需要根据具体的数据集和任务选择合适的聚类算法和参数。
阅读全文

相关推荐

修改下面代码,另画一张可视化图展示出t_sne里面的数据每15行数据个用一种颜色画出。 import pandas as pd from sklearn import cluster from sklearn import metrics import matplotlib.pyplot as plt from sklearn.manifold import TSNE from sklearn.decomposition import PCA def k_means(data_set, output_file, png_file, t_labels, score_file, set_name): model = cluster.KMeans(n_clusters=7, max_iter=1000, init="k-means++") model.fit(data_set) # print(list(model.labels_)) p_labels = list(model.labels_) r = pd.concat([data_set, pd.Series(model.labels_, index=data_set.index)], axis=1) r.columns = list(data_set.columns) + [u'聚类类别'] print(r) # r.to_excel(output_file) with open(score_file, "a") as sf: sf.write("By k-means, the f-m_score of " + set_name + " is: " + str(metrics.fowlkes_mallows_score(t_labels, p_labels))+"\n") sf.write("By k-means, the rand_score of " + set_name + " is: " + str(metrics.adjusted_rand_score(t_labels, p_labels))+"\n") '''pca = PCA(n_components=2) pca.fit(data_set) pca_result = pca.transform(data_set) t_sne = pd.DataFrame(pca_result, index=data_set.index)''' t_sne = TSNE() t_sne.fit(data_set) t_sne = pd.DataFrame(t_sne.embedding_, index=data_set.index) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False dd = t_sne[r[u'聚类类别'] == 0] plt.plot(dd[0], dd[1], 'r.') dd = t_sne[r[u'聚类类别'] == 1] plt.plot(dd[0], dd[1], 'go') dd = t_sne[r[u'聚类类别'] == 2] plt.plot(dd[0], dd[1], 'b*') dd = t_sne[r[u'聚类类别'] == 3] plt.plot(dd[0], dd[1], 'o') dd = t_sne[r[u'聚类类别'] == 4] plt.plot(dd[0], dd[1], 'm.') dd = t_sne[r[u'聚类类别'] == 5] plt.plot(dd[0], dd[1], 'co') dd = t_sne[r[u'聚类类别'] == 6] plt.plot(dd[0], dd[1], 'y*') plt.savefig(png_file) plt.clf() '''plt.scatter(data_set.iloc[:, 0], data_set.iloc[:, 1], c=model.labels_) plt.savefig(png_file) plt.clf()''' frog_data = pd.read_csv("D:/PyCharmPython/pythonProject/mfcc3.csv") tLabel = [] for family in frog_data['name']: if family == "A": tLabel.append(0) elif family == "B": tLabel.append(1) elif family == "C": tLabel.append(2) elif family == "D": tLabel.append(3) elif family == "E": tLabel.append(4) elif family == "F": tLabel.append(5) elif family == "G": tLabel.append(6) scoreFile = "D:/PyCharmPython/pythonProject/scoreOfClustering.txt" first_set = frog_data.iloc[:, 1:1327] k_means(first_set, "D:/PyCharmPython/pythonProject/kMeansSet_1.xlsx", "D:/PyCharmPython/pythonProject/kMeansSet_2.png", tLabel, scoreFile, "Set_1")

大家在看

recommend-type

NPPExport_0.3.0_32位64位版本.zip

Notepad++ NppExport插件,包含win32 和 x64 两个版本。
recommend-type

建立点击按钮-INTOUCH资料

建立点击按钮 如果需要创建用鼠标单击或触摸(当使用触摸屏时)时可立即执行操作的对象链接,您可以使用“触动按钮触动链接”。这些操作可以是改变离散值离散值离散值离散值、执行动作脚本动作脚本动作脚本动作脚本,显示窗口或隐藏窗口命令。下面是四种触动按钮链接类型: 触动按钮 描述 离散值 用于将任何对象或符号设置成用于控制离散标记名状态的按钮。按钮动作可以是设置、重置、切换、瞬间打开(直接)和瞬间关闭(取反)类型。 动作 允许任何对象、符号或按钮链接最多三种不同的动作脚本:按下时、按下期间和释放时。动作脚本可用于将标记名设置为特定的值、显示和(或)隐藏窗口、启动和控制其它应用程序、执行函数等。 显示窗口 用于将对象或符号设置成单击或触摸时可打开一个或多个窗口的按钮。 隐藏窗口 用于将对象或符号设置成单击或触摸时可关闭一个或 多个窗口的按钮。
recommend-type

深圳大学《数据结构》1-4章练习题

深圳大学《数据结构》1-4章练习题
recommend-type

华为CloudIVS 3000技术主打胶片v1.0(C20190226).pdf

华为CloudIVS 3000技术主打胶片 本文介绍了CloudIVS 3000”是什么?”、“用在哪里?”、 “有什么(差异化)亮点?”,”怎么卖”。
recommend-type

关于初始参数异常时的参数号-无线通信系统arm嵌入式开发实例精讲

5.1 接通电源时的故障诊断 接通数控系统电源时,如果数控系统未正常启动,发生异常时,可能是因为驱动单元未 正常启动。请确认驱动单元的 LED 显示,根据本节内容进行处理。 LED显示 现 象 发生原因 调查项目 处 理 驱动单元的轴编号设定 有误 是否有其他驱动单元设定了 相同的轴号 正确设定。 NC 设定有误 NC 的控制轴数不符 正确设定。 插头(CN1A、CN1B)是否 已连接。 正确连接 AA 与 NC 的初始通信未正常 结束。 与 NC 间的通信异常 电缆是否断线 更换电缆 设定了未使用轴或不可 使用。 DIP 开关是否已正确设定 正确设定。 插头(CN1A、CN1B)是否 已连接。 正确连接 Ab 未执行与 NC 的初始通 信。 与 NC 间的通信异常 电缆是否断线 更换电缆 确认重现性 更换单元。12 通过接通电源时的自我诊 断,检测出单元内的存储 器或 IC 存在异常。 CPU 周边电路异常 检查驱动器周围环境等是否 存在异常。 改善周围环 境 如下图所示,驱动单元上方的 LED 显示如果变为紧急停止(E7)的警告显示,表示已 正常启动。 图 5-3 NC 接通电源时正常的驱动器 LED 显示(第 1 轴的情况) 5.2 关于初始参数异常时的参数号 发生初始参数异常(报警37)时,NC 的诊断画面中,报警和超出设定范围设定的异常 参数号按如下方式显示。 S02 初始参数异常 ○○○○ □ ○○○○:异常参数号 □ :轴名称 在伺服驱动单元(MDS-D/DH –V1/V2)中,显示大于伺服参数号的异常编号时,由于 多个参数相互关联发生异常,请按下表内容正确设定参数。 87

最新推荐

recommend-type

CarSim、MATLAB、PreScan,提供车辆动力学、运动控制联合仿真软件安装激活服务,可远程 内容包括: MATLAB R2018b win64 MATLAB R2020a win64 Pre

CarSim、MATLAB、PreScan,提供车辆动力学、运动控制联合仿真软件安装激活服务,可远程 内容包括: MATLAB R2018b win64 MATLAB R2020a win64 PreScan.8.5.0 TruckSim_2019.0 CarSim 2016.1 【其它问题】 打包文件含安装文件和教程,需要点“加好友”吧,需要远程的话20rmb,需要哪款软件可私信我,24h内发。 本人已实现上述软件联合仿真,如需技术指导请私信我^_^
recommend-type

包含300个可选插件rails git macOS hub docker homebrew node php pyth.zip

python
recommend-type

springboot116基于java的教学辅助平台.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
recommend-type

Terraform AWS ACM 59版本测试与实践

资源摘要信息:"本资源是关于Terraform在AWS上操作ACM(AWS Certificate Manager)的模块的测试版本。Terraform是一个开源的基础设施即代码(Infrastructure as Code,IaC)工具,它允许用户使用代码定义和部署云资源。AWS Certificate Manager(ACM)是亚马逊提供的一个服务,用于自动化申请、管理和部署SSL/TLS证书。在本资源中,我们特别关注的是Terraform的一个特定版本的AWS ACM模块的测试内容,版本号为59。 在AWS中部署和管理SSL/TLS证书是确保网站和应用程序安全通信的关键步骤。ACM服务可以免费管理这些证书,当与Terraform结合使用时,可以让开发者以声明性的方式自动化证书的获取和配置,这样可以大大简化证书管理流程,并保持与AWS基础设施的集成。 通过使用Terraform的AWS ACM模块,开发人员可以编写Terraform配置文件,通过简单的命令行指令就能申请、部署和续订SSL/TLS证书。这个模块可以实现以下功能: 1. 自动申请Let's Encrypt的免费证书或者导入现有的证书。 2. 将证书与AWS服务关联,如ELB(Elastic Load Balancing)、CloudFront和API Gateway等。 3. 管理证书的过期时间,自动续订证书以避免服务中断。 4. 在多区域部署中同步证书信息,确保全局服务的一致性。 测试版本59的资源意味着开发者可以验证这个版本是否满足了需求,是否存在任何的bug或不足之处,并且提供反馈。在这个版本中,开发者可以测试Terraform AWS ACM模块的稳定性和性能,确保在真实环境中部署前一切工作正常。测试内容可能包括以下几个方面: - 模块代码的语法和结构检查。 - 模块是否能够正确执行所有功能。 - 模块与AWS ACM服务的兼容性和集成。 - 模块部署后证书的获取、安装和续订的可靠性。 - 多区域部署的证书同步机制是否有效。 - 测试异常情况下的错误处理机制。 - 确保文档的准确性和完整性。 由于资源中没有提供具体的标签,我们无法从中获取关于测试的详细技术信息。同样,由于只提供了一个文件名“terraform-aws-acm-59-master”,无法得知该模块具体包含哪些文件和代码内容。然而,文件名暗示这是一个主版本(master),通常意味着这是主要的、稳定的分支,开发者可以在其上构建和测试他们的配置。 总之,terraform-aws-acm-59是Terraform的一个AWS ACM模块的测试版本,用于自动化管理和部署SSL/TLS证书。这个模块能够简化证书生命周期的管理,并提高与AWS服务的集成效率。测试工作主要是为了验证版本59的模块是否正常工作,并确保其在真实场景中可靠地执行预期功能。"
recommend-type

【HS1101湿敏电阻全面解析】:从基础知识到深度应用的完整指南

# 摘要 HS1101湿敏电阻作为湿度监测的重要元件,在环境监测、农业、工业等多个领域都有广泛应用。本文首先对湿敏电阻的基本概念及其工作原理进行了概述,接着详细探讨了其特性参数,如响应时间、灵敏度以及温度系数等,并针对HS1101型号提供了选型指南和实际应用场景分析。文章还深入讨论了HS1101湿敏电阻在电路设计中的要点和信号处理方法,提供了实践案例来展示其在智能湿度调节器和农业自动灌溉系统中的应用。最后,本文给出了湿敏电阻的维护保养技巧和故障排除方法,以帮助用户确保湿敏电阻的最佳性能和使用寿命。 # 关键字 湿敏电阻;HS1101;特性参数;电路设计;信号处理;环境监测;故障排除 参考资
recommend-type

MATLAB在一个图形窗口中创建一行两列的子图的代码

在MATLAB中,可以使用`subplot`函数在一个图形窗口中创建多个子图。对于一行两列的子图,可以使用以下代码: ```matlab % 创建第一个子图 subplot(1, 2, 1); plot([1, 2, 3], [4, 5, 6]); title('子图1'); % 创建第二个子图 subplot(1, 2, 2); plot([1, 2, 3], [6, 5, 4]); title('子图2'); ``` 这段代码的详细解释如下: 1. `subplot(1, 2, 1);`:创建一个1行2列的子图布局,并激活第一个子图。 2. `plot([1, 2, 3], [4,
recommend-type

Doks Hugo主题:打造安全快速的现代文档网站

资源摘要信息:"Doks是一个适用于Hugo的现代文档主题,旨在帮助用户构建安全、快速且对搜索引擎优化友好的文档网站。在短短1分钟内即可启动一个具有Doks特色的演示网站。以下是选择Doks的九个理由: 1. 安全意识:Doks默认提供高安全性的设置,支持在上线时获得A+的安全评分。用户还可以根据自己的需求轻松更改默认的安全标题。 2. 默认快速:Doks致力于打造速度,通过删除未使用的CSS,实施预取链接和图像延迟加载技术,在上线时自动达到100分的速度评价。这些优化有助于提升网站加载速度,提供更佳的用户体验。 3. SEO就绪:Doks内置了对结构化数据、开放图谱和Twitter卡的智能默认设置,以帮助网站更好地被搜索引擎发现和索引。用户也能根据自己的喜好对SEO设置进行调整。 4. 开发工具:Doks为开发人员提供了丰富的工具,包括代码检查功能,以确保样式、脚本和标记无错误。同时,还支持自动或手动修复常见问题,保障代码质量。 5. 引导框架:Doks利用Bootstrap框架来构建网站,使得网站不仅健壮、灵活而且直观易用。当然,如果用户有其他前端框架的需求,也可以轻松替换使用。 6. Netlify就绪:Doks为部署到Netlify提供了合理的默认配置。用户可以利用Netlify平台的便利性,轻松部署和维护自己的网站。 7. SCSS支持:在文档主题中提及了SCSS,这表明Doks支持使用SCSS作为样式表预处理器,允许更高级的CSS样式化和模块化设计。 8. 多语言支持:虽然没有在描述中明确提及,但Doks作为Hugo主题,通常具备多语言支持功能,这为构建国际化文档网站提供了便利。 9. 定制性和可扩展性:Doks通过其设计和功能的灵活性,允许用户根据自己的品牌和项目需求进行定制。这包括主题颜色、布局选项以及组件的添加或修改。 文件名称 'docs-main' 可能是Doks主题的核心文件,包含网站的主要内容和配置。这个文件对于设置和维护文档网站来说是至关重要的,因为它包含了网站的主要配置信息,如导航结构、品牌设置、SEO配置等。开发者在使用Doks主题时,将重点调整和优化这个文件以满足具体的项目需求。"
recommend-type

E9流程表单前端接口API(V5):前端与后端协同开发的黄金法则

![E9流程表单前端接口API(V5):前端与后端协同开发的黄金法则](https://opengraph.githubassets.com/4b7b246f81a756c8056ca0f80a5b46fad74e128b86dec7d59f1aeedb4b99c6a7/sotiriosmoustogiannis/process-json-format) # 摘要 本文全面介绍了E9流程表单API(V5)的开发与应用,阐述了协同开发理论基础和前端实践,并结合案例分析展示了API在企业流程自动化中的实战应用。文章首先概述了E9流程表单API(V5)的核心概念,然后详细探讨了前后端协同开发的重要
recommend-type

c#获取路径 Microsoft.Win32.SaveFileDialog saveFileDialog = new Microsoft.Win32.SaveFileDialog();

在 C# 中,`Microsoft.Win32.SaveFileDialog` 是一个用于弹出保存文件对话框的类,允许用户选择保存位置和文件名。当你想要让用户从系统中选择一个文件来保存数据时,可以按照以下步骤使用这个类: 首先,你需要创建一个 `SaveFileDialog` 的实例: ```csharp using System.Windows.Forms; // 引入对话框组件 // 创建 SaveFileDialog 对象 SaveFileDialog saveFileDialog = new SaveFileDialog(); ``` 然后你可以设置对话框的一些属性,比如默认保
recommend-type

CRMSeguros-crx插件:扩展与保险公司CRM集成

资源摘要信息:"CRMSeguros-crx插件是一个面向葡萄牙语(巴西)用户的扩展程序,它与Crmsegurro这一特定的保险管理系统集成。这款扩展程序的主要目的是为了提供一个与保险业务紧密相关的客户关系管理(CRM)解决方案,以增强用户在进行保险业务时的效率和组织能力。通过集成到Crmsegurro系统中,CRMSeguros-crx插件能够帮助用户更加方便地管理客户信息、跟踪保险案件、处理报价请求以及维护客户关系。 CRMSeguros-crx插件的开发与设计很可能遵循了当前流行的网页扩展开发标准和最佳实践,这包括但不限于遵循Web Extension API标准,这些标准确保了插件能够在现代浏览器中安全且高效地运行。作为一款扩展程序,它通常会被设计成可自定义并且易于安装,允许用户通过浏览器提供的扩展管理界面快速添加至浏览器中。 由于该插件面向的是巴西市场的保险行业,因此在设计上应该充分考虑了本地市场的特殊需求,比如与当地保险法规的兼容性、对葡萄牙语的支持,以及可能包含的本地保险公司和产品的数据整合等。 在技术实现层面,CRMSeguros-crx插件可能会利用现代Web开发技术,如JavaScript、HTML和CSS等,实现用户界面的交互和与Crmsegurro系统后端的通信。插件可能包含用于处理和展示数据的前端组件,以及用于与Crmsegurro系统API进行安全通信的后端逻辑。此外,为了保证用户体验的连贯性和插件的稳定性,开发者可能还考虑了错误处理、性能优化和安全性等关键因素。 综合上述信息,我们可以总结出以下几点与CRMSeguros-crx插件相关的关键知识点: 1. 扩展程序开发:包括了解如何开发遵循Web Extension API标准的浏览器扩展,以及如何将扩展程序安全地嵌入到目标网页或系统中。 2. 客户关系管理(CRM):涉及CRM系统的基础知识,特别是在保险行业中的应用,以及如何通过技术手段改善和自动化客户关系管理过程。 3. 本地化和国际化:理解如何为特定地区(如巴西)开发软件产品,包括语言本地化、文化适应性、法律法规的符合性等方面。 4. 数据整合与API集成:包括如何从现有系统(如Crmsegurro)中提取数据,并将这些数据有效地整合到扩展程序中。 5. 用户界面(UI)设计:了解如何设计直观、易用的用户界面,以提供良好的用户体验。 6. 错误处理和性能优化:掌握在软件开发过程中如何处理可能出现的错误,并优化应用性能,以确保插件运行稳定、快速。 7. 安全性:了解网络和数据安全的最佳实践,确保用户数据和交易的安全性不被侵犯。 CRMSeguros-crx插件的存在表明了随着技术的进步,越来越多的行业正在通过软件解决方案来提高工作效率,尤其在保险行业,有效的客户关系管理和业务流程自动化已经成为提升竞争力的关键手段。"