利用python画出最短路径仿真图
时间: 2023-06-26 22:03:33 浏览: 181
10, 13, 15, 3, 5, 8 },
{ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12,要画出最短路径仿真图,首先需要用Python实现最短路径算法,比如Dijkstra算法 9, 0, 3, 5, 6, 11 }
}
};
const int Shift或者A*算法。然后,可以使用Python的matplotlib库来可视化路径。
下面以Dijkstra算法_Table[16] = { 1, 1, 2, 2, 2, 2, 2, 2为例,给出一个简单的最短路径仿真图绘制代码:
```python
import matplotlib.pyplot as plt
import,
1, 2, 2, 2, 2, 2, 2, 1 };
void ByteTo networkx as nx
def dijkstra(graph, start_node, end_node):
"""
Dijkstra算法实现
"""
Bit(BYTE* input, BYTE* output, int bits_num) {
int i, j;
for (i = 0; # 初始化距离和前置节点
dist = {node: float('inf') for node in graph}
pred = { i < bits_num; ++i) {
output[i] = (input[i / 8] >> (7 - i % 8node: None for node in graph}
# 设置起始节点的距离为0
dist[start_node] = 0
)) & 1;
}
}
void BitToByte(BYTE* input, BYTE* output, int bits_num) {
int i # 遍历所有节点
unvisited_nodes = set(graph.keys())
while unvisited_nodes:
# 找到当前距离, j;
memset(output, 0, bits_num / 8);
for (i = 0; i < bits_num;最小的节点
curr_node = min(unvisited_nodes, key=lambda node: dist[node])
unvisited_nodes.remove(curr_node)
++i) {
output[i / 8] |= input[i] << (7 - i % 8);
}
}
void PC # 如果找到了终点,则直接返回路径
if curr_node == end_node:
path = []
while curr1_Transform(BYTE* input, BYTE* output) {
int i, j;
BYTE temp[64];
memset(temp,_node is not None:
path.append(curr_node)
curr_node = pred[curr_node]
path.reverse()
return path
0, 64);
for (i = 0; i < 56; ++i) {
temp[i] = input # 更新与当前节点相邻的节点的距离
for neighbor, distance in graph[curr_node].items():
new_distance =[PC1_Table[i] - 1];
}
memcpy(output, temp, 56);
}
void PC2_Transform(BYTE dist[curr_node] + distance
if new_distance < dist[neighbor]:
dist[neighbor] = new_distance
pred[neighbor* input, BYTE* output) {
int i, j;
BYTE temp[56];
memset(temp, 0, 56] = curr_node
# 如果没有找到路径,则返回None
return None
# 构造一个简单的图
);
for (i = 0; i < 48; ++i) {
temp[i] = input[PC2_Table[igraph = {
'A': {'B': 1, 'C': 2},
'B': {'D': 3},
] - 1];
}
memcpy(output, temp, 48);
}
void Shift_Left(BYTE* input, int shift_num, 'C': {'D': 1},
'D': {}
}
# 执行Dijkstra算法,找到最短路径
int bits_num) {
int i, j;
BYTE temp[256];
memcpy(temp, input, bits_num);
for (path = dijkstra(graph, 'A', 'D')
print(path) # 输出:['A', 'C', 'D']
i = 0; i < bits_num; ++i) {
input[i] = temp[(i + shift_num) % bits_num];
}
}
void IP_Transform(BYTE* input, BYTE* output) {
绘制图形
G = nx.DiGraph()
G.add_edges_from([(u, v, {'weight': w}) for u, neighbors in graph.items() for v, w in neighbors.items()])
pos = nx.spring_layout(G)
nx.draw_networkx_nodes(G, pos)
nx.draw_networkx_edges(G, pos)
nx.draw_networkx_labels(G, pos)
nx.draw_networkx_edge_labels(G, pos, {(u, v): str(d['weight']) for u, v, d in G.edges(data=True)})
nx.draw_networkx_edges(G, pos, edgelist=[(path[i], path[i+1]) for i in range(len(path)-1)], edge_color='r', width=2)
plt.axis('off')
plt.show()
```
这段代码首先定义了一个`dijkstra()`函数来实现Dijkstra算法,然后构造了一个简单的图,并使用`dijkstra()`函数找到从起点A到终点D的最短路径。最后,使用matplotlib和networkx库将图形可视化,并将最短路径用红色标出。运行上述代码,可以得到下面的仿真图:
![最短路径仿真图](https://i.imgur.com/fd7oyir.png)
阅读全文