优化你在之前给出的用于模拟机器人惯性导航的运动过程的例程
时间: 2024-03-23 12:40:30 浏览: 53
好的,我可以给你一些优化建议。首先,我们可以用向量化来加速运算。其次,可以使用更高效的算法来计算旋转矩阵和四元数。最后,可以对代码进行重构,使其更加易读和易于维护。
下面是一个优化后的例程:
```matlab
function [pos, vel, quat, rate, accel] = inertial_navigation(t, pos0, vel0, quat0, rate0, accel0, gyro_noise, accel_noise, dt)
% 初始化输出变量
pos = zeros(3, length(t));
pos(:,1) = pos0;
vel = zeros(3, length(t));
vel(:,1) = vel0;
quat = zeros(4, length(t));
quat(:,1) = quat0;
rate = zeros(3, length(t));
rate(:,1) = rate0;
accel = zeros(3, length(t));
accel(:,1) = accel0;
% 初始化噪声过程
gyro_noise_process = gyro_noise * sqrt(dt) * randn(3, length(t));
accel_noise_process = accel_noise * sqrt(dt) * randn(3, length(t));
% 初始化常量
g = [0; 0; -9.81]; % 重力加速度常量
I = eye(3); % 单位矩阵
% 循环计算模拟过程
for i = 2:length(t)
% 生成噪声
gyro_noise_i = gyro_noise_process(:,i);
accel_noise_i = accel_noise_process(:,i);
% 预测姿态和角速度
w = rate(:,i-1) + gyro_noise_i;
q = quat(:,i-1)';
q = quat_update(q, w, dt);
quat(:,i) = q';
R = quat2dcm(q);
% 计算重力加速度
accel_gravity = R' * g;
% 计算测量加速度,并加入噪声
accel_meas = accel(:,i-1) + accel_noise_i;
% 误差状态推导
accel_err = accel_meas - accel_gravity;
rate_err = -rate(:,i-1);
% 更新状态
vel(:,i) = vel(:,i-1) + dt * (R * (accel_err + accel_gravity));
pos(:,i) = pos(:,i-1) + dt * vel(:,i-1) + 0.5 * dt^2 * (R * (accel_err + accel_gravity));
rate(:,i) = rate(:,i-1) + dt * rate_err;
% 修正姿态
w_err = -krp(rate_err, q);
q_err = exp(w_err);
quat(:,i) = quat_mult(q_err', quat(:,i)')';
% 归一化四元数
quat(:,i) = quat(:,i) / norm(quat(:,i));
end
% 辅助函数
function q_new = quat_update(q, w, dt)
q_new = [cos(norm(w)*dt/2); w/norm(w)*sin(norm(w)*dt/2)]*q;
end
function R = quat2dcm(q)
x = q(1);
y = q(2);
z = q(3);
w = q(4);
R = [(w^2+x^2-y^2-z^2), 2*(x*y-w*z), 2*(x*z+w*y);
2*(x*y+w*z), (w^2-x^2+y^2-z^2), 2*(y*z-w*x);
2*(x*z-w*y), 2*(y*z+w*x), (w^2-x^2-y^2+z^2)];
end
function q_new = quat_mult(q1, q2)
x1 = q1(1);
y1 = q1(2);
z1 = q1(3);
w1 = q1(4);
x2 = q2(1);
y2 = q2(2);
z2 = q2(3);
w2 = q2(4);
x_new = w1*x2 + x1*w2 + y1*z2 - z1*y2;
y_new = w1*y2 - x1*z2 + y1*w2 + z1*x2;
z_new = w1*z2 + x1*y2 - y1*x2 + z1*w2;
w_new = w1*w2 - x1*x2 - y1*y2 - z1*z2;
q_new = [x_new, y_new, z_new, w_new];
end
function w = krp(r, q)
x = q(1);
y = q(2);
z = q(3);
w = q(4);
w = [r; -x*r(1) - y*r(2) - z*r(3)];
end
end
```
这个例程中,我们使用了向量化、高效的旋转矩阵和四元数计算方法,以及代码重构来提高代码的效率和可读性。
阅读全文