改进的平均感知器参数学习算法的python实现
时间: 2023-08-10 17:05:03 浏览: 77
以下是一个改进的平均感知器参数学习算法的Python实现:
```python
import numpy as np
class ImprovedPerceptron:
def __init__(self, learning_rate=0.1, num_epochs=1000):
self.learning_rate = learning_rate
self.num_epochs = num_epochs
self.weights = None
self.bias = None
def fit(self, X, y):
n_samples, n_features = X.shape
# Initialize weights and bias to zeros
self.weights = np.zeros(n_features)
self.bias = 0
# Initialize counters for average weights and bias
avg_weights = np.zeros(n_features)
avg_bias = 0
count = 0
for epoch in range(self.num_epochs):
# Iterate over all samples
for i in range(n_samples):
# Compute the predicted output
y_pred = np.dot(self.weights, X[i]) + self.bias
# Update the weights and bias if there is a misclassification
if y[i]*y_pred <= 0:
self.weights += self.learning_rate*y[i]*X[i]
self.bias += self.learning_rate*y[i]
# Update the average weights and bias
count += 1
avg_weights += self.weights
avg_bias += self.bias
# Compute the average weights and bias
self.weights = avg_weights/count
self.bias = avg_bias/count
def predict(self, X):
# Compute the predicted output for X
y_pred = np.dot(X, self.weights) + self.bias
# Return the sign of the predicted output as the predicted class
return np.sign(y_pred)
```
该算法在每次更新权重和偏差时,都会更新平均权重和偏差,最终的权重和偏差是所有平均权重和偏差的平均值。这有助于减少权重和偏差的波动,从而提高算法的稳定性和泛化能力。
阅读全文