cnn-lstm-ARIMA的股票代码,要求用过去五天预测未来八天的收盘价,输入特征有收盘价,最高价,最低价,换手率,涨跌额,涨跌幅,请详细解释每个步骤,写出代码,我要代码
时间: 2024-06-09 08:10:29 浏览: 104
步骤1:数据预处理
首先,需要加载数据,将数据转换为DataFrame格式,并将日期列设置为索引。然后,需要将特征数据进行标准化处理,以确保所有特征的值在相同的范围内。
``` python
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
# 加载数据
data = pd.read_csv('stock_data.csv', index_col='date')
# 标准化处理
scaler = MinMaxScaler()
data = scaler.fit_transform(data)
```
步骤2:划分训练集和测试集
将数据集划分为训练集和测试集。这里可以选择80:20或70:30的比例进行划分。
``` python
# 划分训练集和测试集
train_size = int(len(data) * 0.8)
train_data = data[:train_size]
test_data = data[train_size:]
```
步骤3:构建模型
使用CNN-LSTM-ARIMA模型,首先需要定义CNN和LSTM模型。
``` python
from keras.models import Sequential
from keras.layers import Dense, Dropout, Conv1D, MaxPooling1D, LSTM
# 定义CNN模型
def create_cnn_model():
model = Sequential()
model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(5, 6)))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(Dropout(0.5))
model.add(MaxPooling1D(pool_size=2))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(32, activation='relu'))
return model
# 定义LSTM模型
def create_lstm_model():
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(5, 32)))
model.add(Dropout(0.2))
model.add(LSTM(units=50, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=50))
model.add(Dropout(0.2))
return model
```
然后,将CNN和LSTM模型组合起来,并训练模型。
``` python
from statsmodels.tsa.arima_model import ARIMA
# 构建模型
def cnn_lstm_arima(train_data, test_data):
# 构建CNN模型
cnn_model = create_cnn_model()
# 将数据转换成CNN模型的输入格式
train_X = train_data.reshape((train_data.shape[0], 5, 6))
test_X = test_data.reshape((test_data.shape[0], 5, 6))
# 提取CNN模型的特征
train_features = cnn_model.predict(train_X)
test_features = cnn_model.predict(test_X)
# 构建LSTM模型
lstm_model = create_lstm_model()
# 将CNN模型的特征作为LSTM模型的输入
train_X = train_features.reshape((train_features.shape[0], 5, 32))
test_X = test_features.reshape((test_features.shape[0], 5, 32))
# 训练LSTM模型
lstm_model.compile(loss='mean_squared_error', optimizer='adam')
lstm_model.fit(train_X, train_y, epochs=50, batch_size=64, verbose=2)
# 使用LSTM模型预测未来8天的收盘价
lstm_predictions = lstm_model.predict(test_X)
lstm_predictions = lstm_predictions.reshape((lstm_predictions.shape[0], 1))
# 计算LSTM模型的均方误差
lstm_rmse = np.sqrt(np.mean(np.square(test_y - lstm_predictions)))
# 使用ARIMA模型预测未来8天的收盘价
arima_model = ARIMA(train_data[:, 0], order=(2, 1, 2))
arima_model_fit = arima_model.fit(disp=0)
arima_predictions = arima_model_fit.forecast(steps=8)[0]
# 计算ARIMA模型的均方误差
arima_rmse = np.sqrt(np.mean(np.square(test_y - arima_predictions)))
# 计算CNN-LSTM-ARIMA模型的预测值
cnn_lstm_arima_predictions = (lstm_predictions + arima_predictions) / 2
# 计算CNN-LSTM-ARIMA模型的均方误差
cnn_lstm_arima_rmse = np.sqrt(np.mean(np.square(test_y - cnn_lstm_arima_predictions)))
return cnn_lstm_arima_predictions, lstm_rmse, arima_rmse, cnn_lstm_arima_rmse
```
步骤4:评估模型
最后,使用均方误差评估模型的准确性。
``` python
# 评估模型
predictions, lstm_rmse, arima_rmse, cnn_lstm_arima_rmse = cnn_lstm_arima(train_data, test_data)
print('LSTM模型的均方误差:%.3f' % lstm_rmse)
print('ARIMA模型的均方误差:%.3f' % arima_rmse)
print('CNN-LSTM-ARIMA模型的均方误差:%.3f' % cnn_lstm_arima_rmse)
```
完整代码如下:
阅读全文