cols=[ 'Name', 'Location', 'Year', 'Kilometers_Driven', 'Fuel_Type', 'Transmission', 'Owner_Type', 'Mileage', 'Engine', 'Power', 'Seats'] coeff_df = pd.DataFrame(lr.coef_,cols,columns=['Coefficient'])
时间: 2023-08-20 12:44:51 浏览: 155
这段代码使用了 Pandas 库创建了一个 DataFrame,名为 `coeff_df`,其中包含了一个线性回归模型的系数(即回归方程中自变量的系数)。这个 DataFrame 中有 11 个列,分别是 'Name', 'Location', 'Year', 'Kilometers_Driven', 'Fuel_Type', 'Transmission', 'Owner_Type', 'Mileage', 'Engine', 'Power', 'Seats',每个列对应一个自变量。
在创建 DataFrame 时,使用了 `lr.coef_`,这是一个 Numpy 数组,包含了线性回归模型中每个自变量的系数。将这个数组传递给 DataFrame,同时提供列名和索引名,就可以创建一个具有指定列和索引的 DataFrame。
最后,`columns=['Coefficient']` 参数指定了 DataFrame 中系数这一列的列名为 'Coefficient'。
相关问题
如果length(PET_Tumordata_zero_sd_cols) =0,则PET_Tumordata_zero_sd_cols=PET_Tumordata_zero_sd_cols <-,而且 0,而且PET_Tumordata <- PET_Tumordata;否则PET_Tumordata_zero_sd_cols,PET_Tumordata <- PET_Tumordata,请写出R语言代码
以下是这段 R 语言代码的实现:
```R
if(length(PET_Tumordata_zero_sd_cols) == 0) {
PET_Tumordata_zero_sd_cols <- rep(0, ncol(PET_Tumordata))
PET_Tumordata <- PET_Tumordata
} else {
PET_Tumordata_zero_sd_cols
PET_Tumordata <- PET_Tumordata[, -c(PET_Tumordata_zero_sd_cols)]
}
```
其中 `PET_Tumordata_zero_sd_cols` 是一个长度为 0 或不为 0 的向量,`PET_Tumordata` 是一个数据框。这段代码的意思是,如果 `PET_Tumordata_zero_sd_cols` 的长度为 0,那么将其赋值为所有元素都为 0,然后保留 `PET_Tumordata` 的所有列;否则,删除 `PET_Tumordata` 中 `PET_Tumordata_zero_sd_cols` 所对应的列。
new_df_cols = new_df.columns old_df_cols = older_df.columns total = set(new_df_cols + old_df_cols) new_df = new_df.select(*self.fill_empty_colums(new_df_cols, total)).withColumn("row_priority",F.lit(0)) older_df = older_df.select(*self.fill_empty_colums(old_df_cols, total)).withColumn("row_priority",F.lit(1)) key_column = [F.col(column_name) for column_name in key_columns] merge_spec = Window.partitionBy(key_column).orderBy("row_priority") ranked_df=new_df.unionByName(older_df).withColumn("rank", F.rank().over(merge_spec)) return self.update_audit_created_column(ranked_df,key_column).where(F.col("rank") == 1).drop("rank", "row_priority")
这段代码用 PySpark 实现了对两个 DataFrame 进行合并和去重的操作,并添加了一些元数据信息。下面是使用 SQL 实现的代码:
```sql
-- 选取需要合并的列名
WITH new_cols AS (
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'new_df'
),
old_cols AS (
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'older_df'
),
cols AS (
SELECT DISTINCT COLUMN_NAME
FROM (
SELECT COLUMN_NAME FROM new_cols
UNION ALL
SELECT COLUMN_NAME FROM old_cols
)
),
-- 对 new_df 填充空缺的列,并添加 "row_priority" 列
new_df_filled AS (
SELECT COALESCE(col1, '') AS col1, COALESCE(col2, '') AS col2, ..., COALESCE(colN, '') AS colN, 0 AS row_priority
FROM new_df
),
new_df_selected AS (
SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY row_priority) AS rank
FROM (
-- 选取 new_df 中的列,包括填充空缺的列和 "row_priority" 列
SELECT col1, col2, ..., colN, row_priority
FROM new_df_filled
-- 生成 key_column 列,用于分组
CROSS JOIN (SELECT col1 AS key_column FROM new_df_filled) key_columns
)
),
-- 对 older_df 填充空缺的列,并添加 "row_priority" 列
old_df_filled AS (
SELECT COALESCE(col1, '') AS col1, COALESCE(col2, '') AS col2, ..., COALESCE(colN, '') AS colN, 1 AS row_priority
FROM older_df
),
old_df_selected AS (
SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY row_priority) AS rank
FROM (
-- 选取 older_df 中的列,包括填充空缺的列和 "row_priority" 列
SELECT col1, col2, ..., colN, row_priority
FROM old_df_filled
-- 生成 key_column 列,用于分组
CROSS JOIN (SELECT col1 AS key_column FROM old_df_filled) key_columns
)
),
-- 合并两个 DataFrame,并去重
merged_df AS (
SELECT * FROM new_df_selected
UNION ALL
SELECT * FROM old_df_selected
),
-- 选取合并后的第一行
final_df AS (
SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY rank) AS row_num
FROM merged_df
)
SELECT col1, col2, ..., colN
FROM final_df
WHERE row_num = 1
```
这段 SQL 代码的实现原理与 PySpark 代码相同,主要分为以下几个步骤:
1. 获取需要合并的列名。
2. 对 new_df 和 older_df 分别进行填充空缺列、添加 "row_priority" 列和选取列的操作,生成 new_df_selected 和 old_df_selected 两个数据集。
3. 将 two_df_selected 进行合并,并添加 rank 列,用于去重。
4. 选取合并后的第一行,得到最终的去重结果。
阅读全文