基于pytorch的vgg16代码
时间: 2023-09-17 22:09:14 浏览: 127
以下是基于PyTorch的VGG16代码:
```python
import torch
import torch.nn as nn
import torchvision.models as models
class VGG16(nn.Module):
def __init__(self, num_classes):
super(VGG16, self).__init__()
self.features = models.vgg16(pretrained=True).features
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
```
该代码使用了预训练的VGG16模型,并在其基础上添加了一个全连接层作为分类器。其中,`num_classes`即为分类数,可以根据具体的任务进行调整。在`forward`函数中,输入数据首先通过VGG16的卷积层和池化层进行特征提取,然后通过全连接层进行分类。
阅读全文