self.conv_for_feat3 =Conv(base_channels * 16, base_channels * 8, 1, 1) 为这个卷积层增加cbam
时间: 2023-06-24 08:05:01 浏览: 163
img_conv_3x3.rar_IMG_conv_3x3_conv 3*3/1_conv_3_dsp conv_3x3_pac
可以尝试在这个卷积层后面添加CBAM模块,CBAM模块可以增强网络的注意力机制,提高模型的性能和鲁棒性。
下面是一个示例代码:
```python
import torch.nn as nn
class CBAM(nn.Module):
def __init__(self, channels, reduction):
super(CBAM, self).__init__()
self.channels = channels
self.reduction = reduction
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(self.channels, self.channels // self.reduction, 1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(self.channels // self.reduction, self.channels, 1, bias=False)
self.sigmoid_channel = nn.Sigmoid()
self.conv_channel = nn.Conv2d(2, 1, kernel_size=3, padding=1)
self.fc3 = nn.Conv2d(self.channels, self.channels // self.reduction, 1, bias=False)
self.fc4 = nn.Conv2d(self.channels // self.reduction, self.channels, 1, bias=False)
self.sigmoid_spatial = nn.Sigmoid()
def forward(self, x):
x_avg = self.avg_pool(x)
x_max = self.max_pool(x)
x_pool = x_avg + x_max
x_channel = x_pool.mean(3).mean(2).unsqueeze(2)
x_channel = self.fc1(x_channel)
x_channel = self.relu(x_channel)
x_channel = self.fc2(x_channel)
x_channel = self.sigmoid_channel(x_channel)
x_spatial = x_pool * x_channel
x_spatial = self.fc3(x_spatial)
x_spatial = self.relu(x_spatial)
x_spatial = self.fc4(x_spatial)
x_spatial = self.sigmoid_spatial(x_spatial)
x_attention = x_channel * x_spatial
x_attention = self.conv_channel(x_attention)
return x * x_attention
```
然后在你的代码中添加CBAM模块:
```python
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv_for_feat3 = nn.Conv2d(base_channels * 16, base_channels * 8, 1, 1)
self.cbam = CBAM(channels=base_channels * 8, reduction=16)
def forward(self, x):
x = self.conv_for_feat3(x)
x = self.cbam(x)
return x
```
这样就在`self.conv_for_feat3`卷积层后面添加了CBAM模块。
阅读全文