要求学生掌握《人工智能概论》课程中的基本知识点,了解常用的人工智能方法,能够查找资料,完成相关算法设计。基于以上知识点,使用决策树算法(ID3、C4.5、CART三选一)方法对iris数据集进行分类。
时间: 2024-03-04 18:53:27 浏览: 102
好的,基于以上要求,我可以给您提供一个简单的决策树分类算法的代码示例,用来对iris数据集进行分类。这里我选择使用ID3算法。代码如下:
```python
import pandas as pd
import numpy as np
# 导入数据集
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
dataset = pd.read_csv(url, names=names)
# 划分训练集和测试集
train = dataset.sample(frac=0.8, random_state=1)
test = dataset.drop(train.index)
# 定义节点类
class Node:
def __init__(self, data, labels):
self.data = data # 当前节点的数据集
self.labels = labels # 当前节点的标签列表
self.children = {} # 当前节点的子节点
self.split_feature = None # 当前节点的分裂属性
self.majority_class = None # 当前节点所属的多数类
# 计算信息熵
def entropy(labels):
n_labels = len(labels)
if n_labels <= 1:
return 0
counts = np.bincount(labels)
probs = counts / n_labels
n_classes = np.count_nonzero(probs)
if n_classes <= 1:
return 0
ent = 0.
for i in probs:
ent -= i * np.log2(i)
return ent
# 计算信息增益
def info_gain(data, labels, split_feature):
base_entropy = entropy(labels)
split_entropy = 0.
n_data = len(labels)
for value in set(data[:, split_feature]):
sub_data = data[data[:, split_feature] == value]
sub_labels = labels[data[:, split_feature] == value]
split_entropy += len(sub_labels) / n_data * entropy(sub_labels)
return base_entropy - split_entropy
# 选择最优分裂属性
def choose_feature(node):
data = node.data
labels = node.labels
n_features = data.shape[1]
best_feature = None
best_info_gain = -np.inf
for i in range(n_features):
current_info_gain = info_gain(data, labels, i)
if current_info_gain > best_info_gain:
best_feature = i
best_info_gain = current_info_gain
return best_feature
# 构建决策树
def build_tree(node):
data = node.data
labels = node.labels
n_labels = len(labels)
n_classes = len(set(labels))
if n_labels == 0:
node.majority_class = -1
return
if n_classes == 1:
node.majority_class = labels[0]
return
if data.shape[1] == 0:
node.majority_class = np.argmax(np.bincount(labels))
return
node.split_feature = choose_feature(node)
for value in set(data[:, node.split_feature]):
sub_data = data[data[:, node.split_feature] == value]
sub_labels = labels[data[:, node.split_feature] == value]
node.children[value] = Node(sub_data, sub_labels)
build_tree(node.children[value])
# 预测
def predict(node, sample):
if not node.children:
return node.majority_class
if sample[node.split_feature] not in node.children:
return node.majority_class
return predict(node.children[sample[node.split_feature]], sample)
# 计算准确率
def accuracy(tree, test):
correct = 0
for i in range(test.shape[0]):
if predict(tree, test.iloc[i, :-1]) == test.iloc[i, -1]:
correct += 1
return correct / test.shape[0]
# 主函数
if __name__ == '__main__':
# 划分训练集和测试集
train = dataset.sample(frac=0.8, random_state=1)
test = dataset.drop(train.index)
# 构建决策树
root = Node(train.iloc[:, :-1].values, train.iloc[:, -1].values)
build_tree(root)
# 测试并输出准确率
acc = accuracy(root, test)
print("Accuracy:", acc)
```
需要注意的是,这段代码使用ID3算法来构建决策树,并对iris数据集进行分类。如果您需要使用C4.5或CART算法,只需要在代码中进行相应的修改即可。另外,您还需要安装pandas和numpy这两个库。
阅读全文