yolov5与yolov4结构区别
时间: 2023-04-08 17:04:06 浏览: 116
Yolov5与Yolov4的结构区别在于Yolov5采用了更深的网络结构和更多的特征层,同时使用了更高效的网络结构和更多的技巧来提高检测精度和速度。具体来说,Yolov5采用了CSPDarknet53作为骨干网络,使用SPP和PANet来提取多尺度特征,同时引入了Swish激活函数和DropBlock正则化技术来进一步提高性能。
相关问题
yolov5与yolov4区别
1. 模型结构:YOLOv5相比YOLOv4使用了更深的网络结构,其中包括CSPDarknet53网络、SPP网络和PANet网络,使得YOLOv5的性能更加出色。
2. 精度:YOLOv5在检测精度上相比YOLOv4有所提高,特别是在小目标检测和遮挡物检测方面表现更为出色。
3. 速度:YOLOv5相对于YOLOv4也有一定的速度提升,特别是在GPU上的速度更快,YOLOv5可以达到140FPS的速度,而YOLOv4只能达到65FPS的速度。
4. 数据增强:YOLOv5相比YOLOv4增加了更多的数据增强方法,包括Mosaic数据增强和MixUp数据增强等,这些增强能够提高模型的稳定性和泛化能力。
5. 代码实现:YOLOv5相比YOLOv4代码实现更加简洁,易于理解和修改,同时也方便用户进行定制化开发。
yolov5与yolov4的区别
yolov5与yolov4在网络结构和激活函数上有一些区别。首先,yolov5采用了不同的网络结构,包括YOLOv5s、YOLOv5m、YOLOv5l和YOLOv5x四个模型。YOLOv5s是深度最浅,特征图的宽度最窄的网络,后面三种在此基础上不断加深、加宽。而yolov4使用的是不同的网络结构。其次,yolov5使用的激活函数是leakyReLU和Sigmoid,中间隐藏层使用的是leakyReLU激活函数,最后的检测层使用的是Sigmoid激活函数。而yolov4使用的是mish与leakyReLU激活函数,主干网络使用的是mish。mish激活函数的复杂度较高。此外,需要注意的是,YOLOv5一直在不断更新,截至到目前的版本,可能有一些内容已经改变。因此,要对YOLOv5进行评价时,应该确定一个具体的版本。\[1\]\[2\]\[3\]
#### 引用[.reference_title]
- *1* *3* [yolov4和yolov5详解](https://blog.csdn.net/frighting_ing/article/details/123484104)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [yolov4与yolov5的区别](https://blog.csdn.net/YMilton/article/details/120053082)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文
相关推荐
















