MATLAB提取视频前景目标详细代码

时间: 2024-03-09 09:50:02 浏览: 89
提取视频前景目标可以使用基于背景建模的方法,下面是一个基于高斯混合模型的MATLAB代码示例: ```matlab % 读入视频 v = VideoReader('example.avi'); % 初始化背景模型 bg = readFrame(v); bg = im2double(rgb2gray(bg)); [m, n] = size(bg); bg_model = zeros(m, n, 3); % 高斯混合模型参数 alpha = 0.05; % 学习速率 K = 5; % 高斯分量数量 T = 0.2; % 阈值 % 初始化高斯混合模型 mu = zeros(m, n, K); sigma = zeros(m, n, K); w = zeros(1, K); for k = 1:K mu(:, :, k) = bg; sigma(:, :, k) = 0.3; w(k) = 1 / K; end % 逐帧处理视频 while hasFrame(v) frame = readFrame(v); frame_gray = im2double(rgb2gray(frame)); % 更新背景模型 bg_model = alpha * frame + (1 - alpha) * bg_model; % 计算像素的高斯分布权重 p = zeros(m, n, K); for k = 1:K p(:, :, k) = w(k) * normpdf(frame_gray, mu(:, :, k), sigma(:, :, k)); end p_sum = sum(p, 3); fg = frame_gray .* (p_sum < T); % 更新高斯混合模型参数 for i = 1:m for j = 1:n % 判断是否属于前景 if p_sum(i, j) < T % 更新高斯分量参数 for k = 1:K w(k) = (1 - alpha) * w(k) + alpha * p(i, j, k) / p_sum(i, j); mu(i, j, k) = (1 - alpha) * mu(i, j, k) + alpha * frame_gray(i, j) * p(i, j, k) / p_sum(i, j); sigma(i, j, k) = sqrt((1 - alpha) * sigma(i, j, k)^2 + alpha * ((frame_gray(i, j) - mu(i, j, k))^2) * p(i, j, k) / p_sum(i, j)); end end end end % 显示前景 imshow(fg); end ``` 代码中使用了一个三维数组 `mu` 存储每个像素的高斯分量均值,`sigma` 存储方差,`w` 存储权重。对每一帧图像,计算每个像素的高斯分布权重,阈值化后得到前景。根据前景像素更新高斯混合模型参数。最后将前景显示出来。 注意,该代码只是一个简单的示例,实际应用中需要进行更多的优化和改进。
阅读全文

相关推荐

zip
MATLAB视频的前景目标提取; 视频的前景目标提取 视频监控是中国安防产业中最为重要的信息获取手段。随着“平安城市”建设的顺利开展,各地普遍安装监控摄像头,利用大范围监控视频的信息,应对安防等领域存在的问题。近年来,中国各省市县乡的摄像头数目呈现井喷式增长,大量企业、部门甚至实现了监控视频的全方位覆盖。如北京、上海、杭州监控摄像头分布密度约分别为71、158、130个/平方公里,摄像头数量分别达到115万、100万、40万,为我们提供了丰富、海量的监控视频信息。 目前,监控视频信息的自动处理与预测在信息科学、计算机视觉、机器学习、模式识别等多个领域中受到极大的关注。而如何有效、快速抽取出监控视频中的前景目标信息,是其中非常重要而基础的问题[1-6]。这一问题的难度在于,需要有效分离出移动前景目标的视频往往具有复杂、多变、动态的背景[7,8]。这一技术往往能够对一般的视频处理任务提供有效的辅助。以筛选与跟踪夜晚时罪犯这一应用为例:若能够预先提取视频前景目标,判断出哪些视频并未包含移动前景目标,并事先从公安人员的辨识范围中排除;而对于剩下包含了移动目标的视频,只需辨识排除了背景干扰的纯粹前景,对比度显著,肉眼更易辨识。因此,这一技术已被广泛应用于视频目标追踪,城市交通检测,长时场景监测,视频动作捕捉,视频压缩等应用中。 下面简单介绍一下视频的存储格式与基本操作方法。一个视频由很多帧的图片构成,当逐帧播放这些图片时,类似放电影形成连续动态的视频效果。从数学表达上来看,存储于计算机中的视频,可理解为一个3维数据,其中代表视频帧的长,宽,代表视频帧的帧数。视频也可等价理解为逐帧图片的集合,即,其中为一张长宽分别为的图片。3维矩阵的每个元素(代表各帧灰度图上每个像素的明暗程度)为0到255之间的某一个值,越接近0,像素越黑暗;越接近255,像素越明亮。通常对灰度值预先进行归一化处理(即将矩阵所有元素除以255),可将其近似认为[0,1]区间的某一实数取值,从而方便数据处理。一张彩色图片由R(红),G(绿),B(蓝)三个通道信息构成,每个通道均为同样长宽的一张灰度图。由彩色图片构成的视频即为彩色视频。本问题中,可仅考虑黑白图片构成的视频。在Matlab环境下,视频的读取、播放及相应基本操作程序见附件1。如采用其他编程环境,也可查阅相关资料获得相应操作程序。 题目的监控视频主要由固定位置监控摄像头拍摄,要解决的问题为提取视频前景目标。请通过设计有效的模型与方法,自动从视频中分离前景目标。注意此类视频的特点是相对于前景目标,背景结构较稳定,变化幅度较小,可充分利用该信息实现模型与算法设计。 请你们查阅相关资料和数据,结合视频数据特点,回答下列问题: 问题1:对一个不包含动态背景、摄像头稳定拍摄时间大约5秒的监控视频,构造提取前景目标(如人、车、动物等)的数学模型,并对该模型设计有效的求解方法,从而实现类似图1的应用效果。(附件2提供了一些符合此类特征的监控视频) 图1 左图:原视频帧;右图:分离出的前景目标 问题2:对包含动态背景信息的监控视频(如图2所示),设计有效的前景目标提取方案。(附件2中提供了一些符合此类特征的典型监控视频) 图2 几种典型的动态视频背景,:树叶摇动,水波动,喷泉变化,窗帘晃动 问题3:在监控视频中,当监控摄像头发生晃动或偏移时,视频也会发生短暂的抖动现象(该类视频变换在短时间内可近似视为一种线性仿射变换,如旋转、平移、尺度变化等)。对这种类型的视频,如何有效地提取前景目标?(附件2中提供了一些符合此类特征的典型监控视频) 问题4:在附件3中提供了4组视频(avi文件与mat文件内容相同)。请利用你们所构造的建模方法,从每组视频中选出包含显著前景目标的视频帧标号,并将其在建模论文正文中独立成段表示。务须注明前景目标是出现于哪一个视频(如Campus视频)的哪些帧(如241-250,421-432帧)。 注:强烈建议深刻考虑问题内涵,建造合理、高效的数学模型和求解方法,鼓励进行具有开放思路与创新思维的探索性尝试。 参考文献: [1] Andrews Sobral & Antoine Vacavant, A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos, Computer Vision and Image Understanding, Volume 122, May 2014, Pages 4-21 [2] B. Lee and M. Hedley, “Background estimation for video surveillance,” IVC

最新推荐

recommend-type

航空公司客户满意度数据转换与预测分析Power BI案例研究

内容概要:本文档介绍了航空公司的业务分析案例研究,涵盖两个主要部分:a) 使用SSIS进行数据转换,b) 利用RapidMiner进行预测分析。这两个任务旨在通过改善客户满意度来优化业务运营。数据来源包括多个CSV文件,如flight_1.csv、flight_2.csv、type.csv、customer.csv 和 address.csv。第一部分要求学生创建事实表、客户维度表和时间维度表,并描述整个数据转换流程。第二部分则需要利用RapidMiner开发两种不同的模型(如决策树和逻辑回归)来预测客户满意度,并完成详细的报告,其中包括执行摘要、预测分析过程、重要变量解释、分类结果、改进建议和伦理问题讨论。 适合人群:适用于对数据科学和商业分析有一定基础的学生或专业人士。 使用场景及目标:本案例研究用于教学和评估,帮助学员掌握数据转换和预测建模的技术方法,提高客户满意度和业务绩效。目标是通过实际操作加深对相关工具和技术的理解,并能够将其应用于实际业务中。 其他说明:此作业占总评的40%,截止时间为2024年10月25日16:00。
recommend-type

课题设计-基于MATLAB平台的图像去雾处理+项目源码+文档说明+课题介绍+GUI界面

一、课题介绍 现在我国尤其是北方城市,工业发达,废弃排放严重,这使得雾霾越来越厉害,让能见度极低。这严重影响了我们的交通系统,导航系统,卫星定位系统等,给人民出行,工作带来极大的不便利。目前市场上高清拍摄设备虽然可以让成像清晰点,但是造价高昂。如果有一套软件处理系统,可以实时地处理含雾的图像,让成像去雾化,让图像变得清晰,将会很受欢迎。 该课题是基于MATLAB平台的图像去雾处理,配备一个人机交互GUI界面,可以选择全局直方图均衡化,Retinex算法,同态滤波,通过对比处理前后的图像的直方图,而直方图是一副图像各灰度值在0-256的分布个数的表,信息论已经整明,具有均匀分布直方图的图像,其信息量是最大的。 二、算法介绍 ①全局直方图均衡化:通俗地理解就是,不管三七二十一,直接强行对彩色图像的R,G,B三通道颜色进行histeq均衡处理,然后进行三通道重组; ②Retinex算法:通俗地讲就是,分离R,G,B三通道,对每个通道进行卷积滤波。
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战指南】MATLAB自适应遗传算法调整:优化流程全掌握

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法基础与MATLAB环境搭建 遗传算法(Genetic Algorithm, GA)是模拟生物进化过程的搜索启发式算法,它使用类似自然选择和遗传学的原理在潜在解空间中搜索最优解。在MATLAB中实现遗传算法需要先搭建合适的环境,设置工作路径,以及了解如何调用和使用遗传算法相关的函数和工具箱。 ## 1.1 遗传算法简介 遗传算法是一种全局优化算法,它的特点是不依赖于问题的梯度信息,适用于搜索复杂、多峰等难
recommend-type

在Spring AOP中,如何实现一个环绕通知并在方法执行前后插入自定义逻辑?

在Spring AOP中,环绕通知(Around Advice)是一种强大的通知类型,它在方法执行前后提供完全的控制,允许开发者在目标方法执行前后插入自定义逻辑。要实现环绕通知,你需要创建一个实现`org.aopalliance.intercept.MethodInterceptor`接口的类,并重写`invoke`方法。 参考资源链接:[Spring AOP:前置、后置、环绕通知深度解析](https://wenku.csdn.net/doc/1tvftjguwg?spm=1055.2569.3001.10343) 下面是一个环绕通知的实现示例,我们将通过Spring配置启用这个