cart分类决策树剪枝代码及详解

时间: 2023-08-31 21:36:05 浏览: 148
ZIP

决策树剪枝matlab代码-cs189hw5:cs189hw5

### 回答1: 剪枝是决策树算法中一个重要的步骤,它的目的是防止过拟合。CART(Classification and Regression Trees)分类决策树剪枝主要有两种方法:预剪枝和后剪枝。 预剪枝是在构建决策树的过程中,提前停止某些分支的生长,以防止过拟合。常见的预剪枝策略有限制树的最大深度、限制叶子节点的最小样例数、限制信息增益的最小值等。预剪枝策略可以有效地降低决策树的复杂度,但它也会使得决策树的精度降低。 后剪枝是在构建完整个决策树之后,再对决策树进行简化。常见的后剪枝方法有:REP(Reduced Error Pruning)、PEP(Pessimistic Error Pruning)等。后剪枝策略可以通过删除一些叶子节点来降低决策树的复杂度,同时还能保证决策树的精度。 下面是一个使用后剪枝的 CART分类决策树剪枝的代码及详解: ```python def prune(tree, testData): ''' 后剪枝函数 :param tree: 待剪枝的树 :param testData: 剪枝所需的测试数据集 :return: 剪枝后的树 ''' # 如果测试数据集为空,则直接返回该树的叶子节点的均值 if len(testData) == 0: return getMean(tree) # 如果当前节点是一个子树,则对该子树进行剪枝 if (isinstance(tree, dict)): # 对训练数据进行划分 leftSet, rightSet = binSplitDataSet(testData, tree['spInd'], tree['spVal']) # 对左子树进行剪枝 if (isinstance(tree['left'], dict)): tree['left'] = prune(tree['left'], leftSet) # 对右子树进行剪枝 if (isinstance(tree['right'], dict)): tree['right'] = prune(tree['right'], rightSet) # 如果当前节点的两个子节点都是叶子节点,则考虑合并这两个叶子节点 if not isinstance(tree['left'], dict) and not isinstance(tree['right'], dict): # 计算合并前的误差 errorNoMerge = sum(np.power(leftSet[:, -1] - tree['left'], 2)) + \ sum(np.power(rightSet[:, -1] - tree['right'], 2)) # 计算合并后的误差 treeMean = (tree['left'] + tree['right']) / 2.0 errorMerge = sum(np.power(testData[:, -1] - treeMean, 2)) # 如果合并后的误差小于合并前的误差,则进行合并 if errorMerge < errorNoMerge: return treeMean return tree ``` 该函数的输入参数为待剪枝的树以及用于剪枝的测试数据集。函数的主要流程如下: 1. 如果测试数据集为空,则直接返回该树的叶子节点的均值; 2. 如果当前节点是一个子树,则对该子树进行剪枝,分别对左右子树进行剪枝; 3. 如果当前节点的两个子节点都是叶子节点,则考虑合并这两个叶子节点; 4. 如果合并后的误差小于合并前的误差,则进行合并; 5. 最后返回剪枝后的树。 剪枝过程中最重要的是如何判断是否进行剪枝,并且如何进行剪枝。在上面的代码中,我们通过计算合并前和合并后的误差,来判断是否进行剪枝。如果合并后的误差小于合并前的误差,则进行剪枝。 需要注意的是,在剪枝过程中,我们需要对整个决策树进行遍历,因此该过程非常耗时。为了提高剪枝的效率,我们可以先对整个决策树进行建立,然后再对其进行剪枝。这样可以大大减少计算量,同时也可以避免在建立决策树的过程中出现剪枝误差。 ### 回答2: 决策树剪枝是为了解决决策树过拟合的问题,减小模型复杂度,提高泛化能力。CART算法(Classification and Regression Tree)是一种常用的决策树算法。 CART算法在进行剪枝时,采用了后剪枝的方法。具体代码如下: 1. 数据准备:首先需要准备训练数据和测试数据。将数据集按照一定的比例划分成训练集和测试集,通常训练集占总数据集的70-80%。 2. 构建决策树:利用训练数据构建初始的决策树。对于CART算法来说,树的每个非叶子节点会有两个分支,根据Gini指数或信息增益来选择最优的划分属性。 3. 后剪枝:对构建好的决策树进行后剪枝操作。后剪枝的步骤如下: (1)利用测试集评估从根节点到每个叶子节点的分类准确率,保存在错误率数组中。 (2)递归地从树的底层开始,自底向上地计算每个节点的代价函数。代价函数定义为:路径上节点的错误率加上一个参数乘以路径的复杂度。 (3)计算每个非叶子节点的剪枝前与剪枝后的代价函数之差,选取差值最小的节点作为剪枝节点。 (4)使用剪枝节点的父节点的多数投票法更新剪枝节点,将其变为叶子节点。 (5)重复步骤2-4,直到无法再剪枝为止。 4. 模型评估:使用剪枝后的决策树对测试集进行预测,并计算预测准确率。根据准确率来评估模型的性能和泛化能力。 决策树剪枝的代码实现比较复杂,需要涉及到模型的构建、剪枝、以及模型的评估等环节。以上是对决策树剪枝代码及详解的简要概述,具体实现过程还需要根据具体的编程语言和库进行相应的代码编写和调试。
阅读全文

相关推荐

最新推荐

recommend-type

决策树剪枝算法的python实现方法详解

在Python中实现决策树剪枝,通常会涉及到几个关键概念和算法,包括ID3、C4.5、CART等。 ID3算法是决策树构建的基础之一,它基于信息增益来选择最优属性进行节点划分。信息增益是衡量一个属性能带来多少信息减少,即...
recommend-type

Python机器学习之决策树算法实例详解

决策树算法是机器学习中的一种基础且广泛应用的分类方法,尤其在Python的机器学习领域中。它通过构建一棵树状模型来表示一个决定过程或预测模型。决策树以易于理解和解释著称,即使对于非技术背景的人来说,也能相对...
recommend-type

Java实现的决策树算法完整实例

第二步,决策树的剪枝:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除...
recommend-type

决策树分类模型算法实验报告.doc

【决策树分类模型算法实验报告】 本实验报告主要围绕商务智能中的决策树模型展开,旨在通过数据挖掘技术,特别是利用SQL Server 2008 R2数据库管理系统,深入理解和实践决策树算法。实验的主要目标是了解决策树算法...
recommend-type

决策树分类算法的时间和性能测试

1. 设计与实现决策树分类算法:在实际应用中,决策树的实现通常基于C4.5、ID3或CART算法。这些算法的核心是选择最优的特征进行分割,以最大化信息增益或基尼不纯度。设计过程中,需要考虑如何选择最佳分割点、处理...
recommend-type

Java集合ArrayList实现字符串管理及效果展示

资源摘要信息:"Java集合框架中的ArrayList是一个可以动态增长和减少的数组实现。它继承了AbstractList类,并且实现了List接口。ArrayList内部使用数组来存储添加到集合中的元素,且允许其中存储重复的元素,也可以包含null元素。由于ArrayList实现了List接口,它支持一系列的列表操作,包括添加、删除、获取和设置特定位置的元素,以及迭代器遍历等。 当使用ArrayList存储元素时,它的容量会自动增加以适应需要,因此无需在创建ArrayList实例时指定其大小。当ArrayList中的元素数量超过当前容量时,其内部数组会重新分配更大的空间以容纳更多的元素。这个过程是自动完成的,但它可能导致在列表变大时会有性能上的损失,因为需要创建一个新的更大的数组,并将所有旧元素复制到新数组中。 在Java代码中,使用ArrayList通常需要导入java.util.ArrayList包。例如: ```java import java.util.ArrayList; public class Main { public static void main(String[] args) { ArrayList<String> list = new ArrayList<String>(); list.add("Hello"); list.add("World"); // 运行效果图将显示包含"Hello"和"World"的列表 } } ``` 上述代码创建了一个名为list的ArrayList实例,并向其中添加了两个字符串元素。在运行效果图中,可以直观地看到这个列表的内容。ArrayList提供了多种方法来操作集合中的元素,比如get(int index)用于获取指定位置的元素,set(int index, E element)用于更新指定位置的元素,remove(int index)或remove(Object o)用于删除元素,size()用于获取集合中元素的个数等。 为了演示如何使用ArrayList进行字符串的存储和管理,以下是更加详细的代码示例,以及一个简单的运行效果图展示: ```java import java.util.ArrayList; import java.util.Iterator; public class Main { public static void main(String[] args) { // 创建一个存储字符串的ArrayList ArrayList<String> list = new ArrayList<String>(); // 向ArrayList中添加字符串元素 list.add("Apple"); list.add("Banana"); list.add("Cherry"); list.add("Date"); // 使用增强for循环遍历ArrayList System.out.println("遍历ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 使用迭代器进行遍历 System.out.println("使用迭代器遍历:"); Iterator<String> iterator = list.iterator(); while (iterator.hasNext()) { String fruit = iterator.next(); System.out.println(fruit); } // 更新***List中的元素 list.set(1, "Blueberry"); // 移除ArrayList中的元素 list.remove(2); // 再次遍历ArrayList以展示更改效果 System.out.println("修改后的ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 获取ArrayList的大小 System.out.println("ArrayList的大小为: " + list.size()); } } ``` 在运行上述代码后,控制台会输出以下效果图: ``` 遍历ArrayList: Apple Banana Cherry Date 使用迭代器遍历: Apple Banana Cherry Date 修改后的ArrayList: Apple Blueberry Date ArrayList的大小为: 3 ``` 此代码段首先创建并初始化了一个包含几个水果名称的ArrayList,然后展示了如何遍历这个列表,更新和移除元素,最终再次遍历列表以展示所做的更改,并输出列表的当前大小。在这个过程中,可以看到ArrayList是如何灵活地管理字符串集合的。 此外,ArrayList的实现是基于数组的,因此它允许快速的随机访问,但对元素的插入和删除操作通常需要移动后续元素以保持数组的连续性,所以这些操作的性能开销会相对较大。如果频繁进行插入或删除操作,可以考虑使用LinkedList,它基于链表实现,更适合于这类操作。 在开发中使用ArrayList时,应当注意避免过度使用,特别是当知道集合中的元素数量将非常大时,因为这样可能会导致较高的内存消耗。针对特定的业务场景,选择合适的集合类是非常重要的,以确保程序性能和资源的最优化利用。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MATLAB信号处理优化】:算法实现与问题解决的实战指南

![【MATLAB信号处理优化】:算法实现与问题解决的实战指南](https://i0.hdslb.com/bfs/archive/e393ed87b10f9ae78435997437e40b0bf0326e7a.png@960w_540h_1c.webp) # 1. MATLAB信号处理基础 MATLAB,作为工程计算和算法开发中广泛使用的高级数学软件,为信号处理提供了强大的工具箱。本章将介绍MATLAB信号处理的基础知识,包括信号的类型、特性以及MATLAB处理信号的基本方法和步骤。 ## 1.1 信号的种类与特性 信号是信息的物理表示,可以是时间、空间或者其它形式的函数。信号可以被分
recommend-type

在西门子S120驱动系统中,更换SMI20编码器时应如何确保数据的正确备份和配置?

在西门子S120驱动系统中更换SMI20编码器是一个需要谨慎操作的过程,以确保数据的正确备份和配置。这里是一些详细步骤: 参考资源链接:[西门子Drive_CLIQ编码器SMI20数据在线读写步骤](https://wenku.csdn.net/doc/39x7cis876?spm=1055.2569.3001.10343) 1. 在进行任何操作之前,首先确保已经备份了当前工作的SMI20编码器的数据。这通常需要使用STARTER软件,并连接CU320控制器和电脑。 2. 从拓扑结构中移除旧编码器,下载当前拓扑结构,然后删除旧的SMI
recommend-type

实现2D3D相机拾取射线的关键技术

资源摘要信息: "camera-picking-ray:为2D/3D相机创建拾取射线" 本文介绍了一个名为"camera-picking-ray"的工具,该工具用于在2D和3D环境中,通过相机视角进行鼠标交互时创建拾取射线。拾取射线是指从相机(或视点)出发,通过鼠标点击位置指向场景中某一点的虚拟光线。这种技术广泛应用于游戏开发中,允许用户通过鼠标操作来选择、激活或互动场景中的对象。为了实现拾取射线,需要相机的投影矩阵(projection matrix)和视图矩阵(view matrix),这两个矩阵结合后可以逆变换得到拾取射线的起点和方向。 ### 知识点详解 1. **拾取射线(Picking Ray)**: - 拾取射线是3D图形学中的一个概念,它是从相机出发穿过视口(viewport)上某个特定点(通常是鼠标点击位置)的射线。 - 在游戏和虚拟现实应用中,拾取射线用于检测用户选择的对象、触发事件、进行命中测试(hit testing)等。 2. **投影矩阵(Projection Matrix)与视图矩阵(View Matrix)**: - 投影矩阵负责将3D场景中的点映射到2D视口上,通常包括透视投影(perspective projection)和平面投影(orthographic projection)。 - 视图矩阵定义了相机在场景中的位置和方向,它将物体从世界坐标系变换到相机坐标系。 - 将投影矩阵和视图矩阵结合起来得到的invProjView矩阵用于从视口坐标转换到相机空间坐标。 3. **实现拾取射线的过程**: - 首先需要计算相机的invProjView矩阵,这是投影矩阵和视图矩阵的逆矩阵。 - 使用鼠标点击位置的视口坐标作为输入,通过invProjView矩阵逆变换,计算出射线在世界坐标系中的起点(origin)和方向(direction)。 - 射线的起点一般为相机位置或相机前方某个位置,方向则是从相机位置指向鼠标点击位置的方向向量。 - 通过编程语言(如JavaScript)的矩阵库(例如gl-mat4)来执行这些矩阵运算。 4. **命中测试(Hit Testing)**: - 使用拾取射线进行命中测试是一种检测射线与场景中物体相交的技术。 - 在3D游戏开发中,通过计算射线与物体表面的交点来确定用户是否选中了一个物体。 - 此过程中可能需要考虑射线与不同物体类型的交互,例如球体、平面、多边形网格等。 5. **JavaScript与矩阵操作库**: - JavaScript是一种广泛用于网页开发的编程语言,在WebGL项目中用于处理图形渲染逻辑。 - gl-mat4是一个矩阵操作库,它提供了创建和操作4x4矩阵的函数,这些矩阵用于WebGL场景中的各种变换。 - 通过gl-mat4库,开发者可以更容易地执行矩阵运算,而无需手动编写复杂的数学公式。 6. **模块化编程**: - camera-picking-ray看起来是一个独立的模块或库,它封装了拾取射线生成的算法,让开发者能够通过简单的函数调用来实现复杂的3D拾取逻辑。 - 模块化编程允许开发者将拾取射线功能集成到更大的项目中,同时保持代码的清晰和可维护性。 7. **文件名称列表**: - 提供的文件名称列表是"camera-picking-ray-master",表明这是一个包含多个文件和子目录的模块或项目,通常在GitHub等源代码托管平台上使用master分支来标识主分支。 - 开发者可以通过检查此项目源代码来更深入地理解拾取射线的实现细节,并根据需要进行修改或扩展功能。 ### 结论 "camera-picking-ray"作为一个技术工具,为开发者提供了一种高效生成和使用拾取射线的方法。它通过组合和逆变换相机矩阵,允许对3D场景中的物体进行精准选择和交互。此技术在游戏开发、虚拟现实、计算机辅助设计(CAD)等领域具有重要应用价值。通过了解和应用拾取射线,开发者可以显著提升用户的交互体验和操作精度。