matlab缺陷检测代码

时间: 2023-10-11 18:07:58 浏览: 102
Matlab中实现缺陷检测的方法有很多种,下面是一种常见的基于图像处理的缺陷检测代码示例: ```matlab % 读入待检测图像 img = imread('test.jpg'); % 将图像转为灰度图 grayimg = rgb2gray(img); % 对灰度图进行高斯滤波,以平滑图像 blurimg = imgaussfilt(grayimg, 2); % 对平滑后的图像进行边缘检测 edgeimg = edge(blurimg, 'Canny'); % 对边缘图像进行形态学处理,以消除噪声和填充小洞 se = strel('disk', 2); morphimg = imclose(edgeimg, se); % 对形态学处理后的图像进行连通区域分析,以找到缺陷区域 cc = bwconncomp(morphimg); stats = regionprops(cc, 'Area', 'BoundingBox'); % 遍历所有连通区域,找到缺陷区域 for i = 1:cc.NumObjects if stats(i).Area > 100 && stats(i).BoundingBox(3) < 50 && stats(i).BoundingBox(4) < 50 % 如果区域面积大于100,且宽高均小于50,则认为是缺陷区域 % 在原始图像上用红色矩形框标记缺陷区域 x = stats(i).BoundingBox(1); y = stats(i).BoundingBox(2); w = stats(i).BoundingBox(3); h = stats(i).BoundingBox(4); rectangle('Position', [x, y, w, h], 'EdgeColor', 'r', 'LineWidth', 2); end end ``` 这段代码实现了以下功能: 1. 读入待检测图像,并将其转为灰度图。 2. 对灰度图进行高斯滤波,以平滑图像。 3. 对平滑后的图像进行边缘检测。 4. 对边缘图像进行形态学处理,以消除噪声和填充小洞。 5. 对形态学处理后的图像进行连通区域分析,以找到缺陷区域。 6. 遍历所有连通区域,找到面积大于100,且宽高均小于50的区域,认为是缺陷区域。 7. 在原始图像上用红色矩形框标记缺陷区域。 需要注意的是,这段代码只是一个简单的示例,实际应用中需要根据具体情况进行调整。
阅读全文

相关推荐

zip
机器学习项目基于CNN实现布的匹缺陷检测Matlab源代码(准确度达97.79%)+项目详细说明+代码注释.zip 【资源介绍】 该项目是个人毕设项目,答辩评审分达到95分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。 该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。 项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 测试环境: ### CPU : 12th Gen Intel(R) Core(TM) i7-12700H 2.70 GHz ### GPU : NVIDIA RTX3070Ti ### RAM : 32GB ### Matlab R2020a (Deep Learning Tools) ### 注 :Data文件过大 未上传 # 一.神经网络概述 ## 1. 卷积神经网络概念 人工神经网络(Artificial Neural Networks,ANN)是一种模拟生物神经系统的结构和行为,进行分布式并行信息处理的算法数学模型。ANN通过调整内部神经元与神经元之间的权重关系,从而达到处理信息的目的。而卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它由若干卷积层和池化层组成,尤其在图像处理方面CNN的表现十分出色。 CNN的基本结构由输入层、卷积层(convolutional layer)、池化层(pooling layer,也称为取样层)、全连接层及输出层构成。卷积层和池化层一般会取若干个,采用卷积层和池化层交替设置,即一个卷积层连接一个池化层,池化层后再连接一个卷积层,依此类推。由于卷积层中输出特征图的每个神经元与其输入进行局部连接,并通过对应的连接权值与局部输入进行加权求和再加上偏置值,得到该神经元输入值,该过程等同于卷积过程,CNN也由此而得名 图像输入层:用于指定图像大小。这些数字对应于高度、宽度和通道大小。数字数据由灰度图像组成,因此通道大小(颜色通道)为 1。对于彩色图像,通道大小为 3,对应于 RGB 值。 卷积层:在三层卷积层中,第一层有8个3x3的卷积核,第二层有16个3x3的卷积核,第三层有32个3x3的卷积核。卷积层逐渐加深,不断提取输入图像的特征。 批量归一化层批量归一化层对网络中的激活值和梯度传播进行归一化,使网络训练成为更简单的优化问题。在卷积层和非线性部分(例如 ReLU 层)之间使用批量归一化层,来加速网络训练并降低对网络初始化的敏感度。 ReLU 层:批量归一化层后接一个非线性激活函数。最常见的激活函数是修正线性单元 (ReLU)。使用 reluLayer 创建 ReLU 层。 最大池化层:卷积层(带激活函数)有时会后跟下采样操作,以减小特征图的空间大小并删除冗余空间信息。通过下采样可以增加更深卷积层中的滤波器数量,而不会增加每层所需的计算量。下采样的一种方法是使用最大池化,在此示例中,该矩形区域的大小是2 全连接层:卷积层和下采样层后跟一个或多个全连接层。顾名思义,全连接层中的神经元将连接到前一层中的所有神经元。该层将先前层在图像中学习的所有特征组合在一起,以识别较大的模式。最后一个全连接层将特征组合在一起来对图像进行分类。因此,最后一个全连接层中的 OutputSize 参数等于目标数据中的类数。 softmax 层: softmax 激活函数对全连接层的输出进行归一化。 分类层:最终层是分类层。该层使用 softmax 激活函数针对每个输入返回的概率,将输入分配到其中一个互斥类并计算损失。 ## 2. 卷积神经网络的特点 卷积神经网络由多层感知机(MLP)演变而来,由于其具有局部区域连接、权值共享、降采样的结构特点,使得卷积神经网络在图像处理领域表现出色。卷积神经网络相比于其他神经网络的特殊性主要在于权值共享与局部连接两个方面。权值共享使得卷积神经网络的网络结构更加类似于生物神经网络。局部连接不像传统神经网络那样,第n-1层的每一神经元都与第n层的所有神经元连接,而是第n-1层的神经元与第n层的部分神经元之间连接。这两个特点的作用在于降低了网络模型的复杂度,减少了权值的数目。 # 二.图像数据预处理 ## 2.1处理步骤 1.裁剪图像并保存 考虑到图像边缘模糊和噪声会对图像的特征提取造成影响,将图像imcrop; 2.加载数据集 3.显示类别数量 4.图像的维度大小 5.为了使各类样本数量平衡选取数量最少的基准抽取样本 6.图像预处理,将图像转换 7.样本分割,随机抽取样本分割7:3的训练集和验证集

最新推荐

recommend-type

一篇不错的缺陷检测文章附详细代码-缺陷检测 CL.doc

缺陷检测技术及Matlab实现 在计算机视觉和图像处理领域,缺陷检测是一项非常重要的技术。缺陷检测的目的是检测图像中的缺陷区域,...本文提供了一个使用Matlab实现缺陷检测的实例代码,并对缺陷检测技术进行了概述。
recommend-type

Spring MVC架构详解与配置指南:实现Web应用的高效开发

内容概要:本文详细介绍了Spring MVC的基本概念及其核心组件的工作流程,包括DispatcherServlet、HandlerMapping、Controller、ModelAndView、ViewResolver等。此外,文章还提供了传统XML配置方法以及Spring Boot下的简化配置方式,帮助读者快速掌握Spring MVC的使用技巧,提高Web应用程序的开发效率和可维护性。 适合人群:对于希望深入理解和使用Spring MVC进行Web开发的技术人员来说非常有用,特别是具备一定Java基础的开发者。 使用场景及目标:①了解Spring MVC的核心机制和工作原理;②学会通过传统的XML配置或Spring Boot来搭建Spring MVC项目;③提升对Web开发中模型、视图和控制器分离的理解;④利用Spring MVC的优势构建高性能和易于维护的Web应用。 其他说明:本指南不仅限于理论讲解,还有实际操作的例子,帮助读者更好地将所学知识应用于实践。同时,针对Spring Boot环境下的使用做了详细介绍,有助于快速上手现代Web开发工具和技术栈。
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

PROTEUS符号定制指南:个性化元件创建与修改的全面攻略

![PROTEUS符号定制指南:个性化元件创建与修改的全面攻略](https://circuits-diy.com/wp-content/uploads/2020/05/74LS00-pinout.png) 参考资源链接:[Proteus电子元件符号大全:从二极管到场效应管](https://wenku.csdn.net/doc/1fahxsg8um?spm=1055.2635.3001.10343) # 1. PROTEUS符号定制基础知识 PROTEUS符号定制是电子工程设计中不可或缺的一环,它允许设计者创建和修改电路元件符号,以符合特定的设计需求。本章将为你提供关于PROTEUS符号
recommend-type

https://www.lagou.com/wn/爬取该网页职位名称,薪资待遇,学历,企业类型,工作地点数据保存为CSV文件的python代码

首先,你需要使用Python的requests库来获取网页内容,然后使用BeautifulSoup解析HTML,提取所需信息。由于这个链接指向的是拉勾网的搜索结果页面,通常这类网站会有反爬虫机制,所以你可能需要设置User-Agent,模拟浏览器访问,并处理可能的登录验证。 以下是一个基本的示例,注意这只是一个基础模板,实际操作可能需要根据网站的具体结构进行调整: ```python import requests from bs4 import BeautifulSoup import csv # 模拟浏览器头信息 headers = { 'User-Agent': 'Mozi