深度卷积和深度可分离卷积代码实现
时间: 2023-09-25 21:14:55 浏览: 158
深度卷积和深度可分离卷积的代码实现会有所不同。以下是它们的代码实现示例:
深度卷积的代码实现:
```python
import tensorflow as tf
# 输入张量
input_tensor = tf.placeholder(tf.float32, shape=[None, height, width, channels])
# 卷积核
kernel = tf.Variable(tf.truncated_normal([kernel_size, kernel_size, input_channels, output_channels], stddev=0.1))
# 深度卷积
conv_output = tf.nn.conv2d(input_tensor, kernel, strides=[1, stride, stride, 1], padding='SAME')
```
深度可分离卷积的代码实现:
```python
import tensorflow as tf
# 输入张量
input_tensor = tf.placeholder(tf.float32, shape=[None, height, width, channels])
# 深度可分离卷积
depthwise_output = tf.nn.depthwise_conv2d(input_tensor, depthwise_filter, strides=[1, stride, stride, 1], padding='SAME')
pointwise_output = tf.nn.conv2d(depthwise_output, pointwise_filter, strides=[1, 1, 1, 1], padding='SAME')
```
在以上代码示例中,`input_tensor`表示输入张量,`kernel`表示卷积核,`conv_output`表示深度卷积的输出。对于深度可分离卷积,`depthwise_output`表示Depthwise Convolution的输出,`pointwise_output`表示Pointwise Convolution的输出。这里的代码只是示例,实际实现可能会有所不同,具体的实现方式会根据使用的深度学习框架而有所差异。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [深度可分离卷积](https://blog.csdn.net/zfjBIT/article/details/127521956)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* [深度可分离卷积(计算过程及代码实现)](https://blog.csdn.net/m0_45267220/article/details/130291855)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文