深度可分离卷积代码实现
时间: 2024-01-14 12:20:33 浏览: 134
深度可分离卷积的代码实现可以参考以下步骤:
1. 导入所需的库和模块:
```python
import torch
import torch.nn as nn
```
2. 定义深度可分离卷积的类:
```python
class DepthwiseSeparableConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super(DepthwiseSeparableConv, self).__init__()
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, groups=in_channels)
self.pointwise = nn.Conv2d(in_channels, out_channels, 1)
def forward(self, x):
x = self.depthwise(x)
x = self.pointwise(x)
return x
```
3. 创建模型实例并进行使用:
```python
model = DepthwiseSeparableConv(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1)
input = torch.randn(1, 3, 224, 224)
output = model(input)
```
这样就完成了深度可分离卷积的代码实现。
阅读全文