将深度可分离卷积融入inception结构的代码实现
时间: 2023-07-09 22:06:16 浏览: 79
以下是使用深度可分离卷积融入inception结构的代码实现:
```python
from keras.layers import Input, Conv2D, DepthwiseConv2D, Concatenate
def inception_block(x, filters):
tower_1 = Conv2D(filters=filters[0], kernel_size=(1, 1), padding='same', activation='relu')(x)
tower_2 = Conv2D(filters=filters[1], kernel_size=(1, 1), padding='same', activation='relu')(x)
tower_2 = DepthwiseConv2D(kernel_size=(3, 3), padding='same', activation='relu')(tower_2)
tower_2 = Conv2D(filters=filters[1], kernel_size=(1, 1), padding='same', activation='relu')(tower_2)
tower_3 = Conv2D(filters=filters[2], kernel_size=(1, 1), padding='same', activation='relu')(x)
tower_3 = DepthwiseConv2D(kernel_size=(5, 5), padding='same', activation='relu')(tower_3)
tower_3 = Conv2D(filters=filters[2], kernel_size=(1, 1), padding='same', activation='relu')(tower_3)
tower_4 = DepthwiseConv2D(kernel_size=(3, 3), padding='same', activation='relu')(x)
tower_4 = Conv2D(filters=filters[3], kernel_size=(1, 1), padding='same', activation='relu')(tower_4)
output = Concatenate(axis=-1)([tower_1, tower_2, tower_3, tower_4])
return output
```
这里的`inception_block`函数实现了一个inception结构,其中包含四个分支,分别是一个1x1的卷积层、一个1x1卷积接一个3x3深度可分离卷积、一个1x1卷积接一个5x5深度可分离卷积和一个3x3深度可分离卷积。最后将四个分支的输出在通道维度上拼接起来。
阅读全文