LU分解求九维矩阵逆 C语言实现
时间: 2023-11-22 20:07:42 浏览: 76
LU分解是一种常用于求矩阵逆的方法,下面是一个使用C语言实现九维矩阵逆的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#define N 9
void luDecomposition(double A[N][N], int P[N]) {
int i, j, k;
double max, tmp;
for (i = 0; i < N; i++) {
P[i] = i; // 初始化置换矩阵
max = 0.0;
for (j = 0; j < N; j++) {
if (abs(A[i][j]) > max) {
max = abs(A[i][j]); // 找出第i行绝对值最大的元素
}
}
if (max == 0.0) { // 矩阵奇异,无法进行LU分解
printf("Singular matrix, cannot do LU decomposition.\n");
return;
}
for (j = i; j < N; j++) {
A[i][j] /= max; // 将第i行除以绝对值最大的元素,以避免在后面的计算中出现大量小数
}
for (j = i + 1; j < N; j++) {
max = A[j][i]; // 找出第i列下方绝对值最大的元素
k = i;
for (int l = i + 1; l < N; l++) {
if (abs(A[l][i]) > max) {
max = abs(A[l][i]);
k = l;
}
}
if (max == 0.0) { // 矩阵奇异,无法进行LU分解
printf("Singular matrix, cannot do LU decomposition.\n");
return;
}
if (k != j) { // 交换第j行和第k行
for (int l = 0; l < N; l++) {
tmp = A[k][l];
A[k][l] = A[j][l];
A[j][l] = tmp;
}
tmp = P[k];
P[k] = P[j];
P[j] = tmp;
}
A[j][i] /= A[i][i];
for (int l = i + 1; l < N; l++) {
A[j][l] -= A[j][i] * A[i][l];
}
}
}
}
void luSolve(double A[N][N], int P[N], double b[N], double x[N]) {
int i, j;
double sum;
for (i = 0; i < N; i++) {
sum = b[P[i]];
for (j = 0; j < i; j++) {
sum -= A[i][j] * x[j];
}
x[i] = sum;
}
for (i = N - 1; i >= 0; i--) {
sum = x[i];
for (j = i + 1; j < N; j++) {
sum -= A[i][j] * x[j];
}
x[i] = sum / A[i][i];
}
}
void matrixInverse(double A[N][N], double A_inv[N][N]) {
int P[N];
double L[N][N], U[N][N], b[N], x[N];
int i, j, k;
luDecomposition(A, P);
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
if (i == j) {
L[i][j] = 1.0;
U[i][j] = A[i][j];
} else if (i > j) {
L[i][j] = A[i][j];
U[i][j] = 0.0;
} else {
L[i][j] = 0.0;
U[i][j] = A[i][j];
}
}
}
for (k = 0; k < N; k++) {
for (i = 0; i < N; i++) {
b[i] = 0.0;
}
b[k] = 1.0;
luSolve(L, P, b, x);
for (i = 0; i < N; i++) {
A_inv[i][k] = x[i];
}
luSolve(U, P, x, b);
for (i = 0; i < N; i++) {
A_inv[i][k] = x[i];
}
}
}
void printMatrix(double A[N][N], char *name) {
int i, j;
printf("%s = [\n", name);
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
printf("%8.4f ", A[i][j]);
}
printf("\n");
}
printf("]\n");
}
int main() {
double A[N][N] = {{0.8147, 0.0975, 0.1576, 0.1419, 0.6557, 0.7577, 0.7431, 0.3922, 0.6555},
{0.9058, 0.2785, 0.9706, 0.4218, 0.0357, 0.7431, 0.3922, 0.7060, 0.1712},
{0.1270, 0.5469, 0.9572, 0.9157, 0.8491, 0.3922, 0.7060, 0.0318, 0.7060},
{0.9134, 0.9575, 0.4854, 0.7922, 0.9340, 0.0318, 0.0318, 0.2769, 0.0318},
{0.6324, 0.9649, 0.8003, 0.9595, 0.6787, 0.2769, 0.2769, 0.0462, 0.2769},
{0.0975, 0.1576, 0.1419, 0.6557, 0.7577, 0.7431, 0.3922, 0.6555, 0.3922},
{0.2785, 0.9706, 0.4218, 0.0357, 0.7431, 0.3922, 0.7060, 0.1712, 0.7060},
{0.5469, 0.9572, 0.9157, 0.8491, 0.3922, 0.7060, 0.0318, 0.7060, 0.0318},
{0.9575, 0.4854, 0.7922, 0.9340, 0.0318, 0.0318, 0.2769, 0.0318, 0.2769}};
double A_inv[N][N];
printMatrix(A, "A");
matrixInverse(A, A_inv);
printMatrix(A_inv, "A_inv");
return 0;
}
```
其中,`luDecomposition`函数用于进行LU分解,`luSolve`函数用于求解线性方程组,`matrixInverse`函数用于求矩阵逆,`printMatrix`函数用于打印矩阵。在`main`函数中,我们定义了一个九维矩阵`A`,并求出它的逆矩阵`A_inv`,然后分别打印出`A`和`A_inv`。
需要注意的是,LU分解的实现中需要使用置换矩阵,这里我们用一个长度为N的数组`P`来表示。此外,在进行LU分解和求解线性方程组时,需要避免除以0的情况,因此要特判矩阵奇异的情况。
阅读全文