手写数字识别matlab代码
时间: 2023-06-25 07:07:10 浏览: 112
以下是一个简单的手写数字识别的MATLAB代码示例:
1. 数据集处理
首先下载MNIST数据集,并将其解压缩到指定目录中。然后使用以下代码将数据集加载到MATLAB中:
```matlab
% Load training data
trainImages = loadMNISTImages('train-images-idx3-ubyte');
trainLabels = loadMNISTLabels('train-labels-idx1-ubyte');
% Load test data
testImages = loadMNISTImages('t10k-images-idx3-ubyte');
testLabels = loadMNISTLabels('t10k-labels-idx1-ubyte');
```
2. 训练模型
使用神经网络进行训练,并在测试集上进行评估。以下是一个简单的示例:
```matlab
% Create a neural network with one hidden layer
hiddenLayerSize = 100;
net = patternnet(hiddenLayerSize);
% Train the network
net = train(net, trainImages, dummyEncoding(trainLabels));
% Test the network
predictedLabels = net(testImages);
predictedLabels = vec2ind(predictedLabels) - 1;
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
fprintf('Test accuracy: %.2f%%\n', accuracy * 100);
```
3. 手写数字识别
现在我们可以使用训练好的模型对手写数字进行识别。以下是一个简单的示例:
```matlab
% Load an image of a handwritten digit
img = imread('digit.png');
% Convert the image to grayscale and resize it to 28x28 pixels
img = rgb2gray(img);
img = imresize(img, [28 28]);
% Flatten the image into a vector
img = img(:)';
% Use the neural network to predict the digit
predictedLabel = net(img');
fprintf('Predicted label: %d\n', predictedLabel);
```
上述代码中,`digit.png`是一个28x28像素的手写数字图像。我们将其转换为灰度图像,并将其大小调整为28x28像素。然后我们将图像展平为一个784维的向量,并使用训练好的神经网络进行预测。
阅读全文
相关推荐













