曼哈顿距离矩阵,python

时间: 2023-07-17 07:12:23 浏览: 165
以下是使用Python编写的计算曼哈顿距离矩阵的代码: ```python def manhattan_distance_matrix(points): n = len(points) distance_matrix = [[0 for _ in range(n)] for _ in range(n)] for i in range(n): for j in range(n): distance_matrix[i][j] = abs(points[i][0] - points[j][0]) + abs(points[i][1] - points[j][1]) return distance_matrix # 示例输入 points = [(1, 2), (3, 4), (5, 6)] distance_matrix = manhattan_distance_matrix(points) # 输出距离矩阵 for row in distance_matrix: print(row) ``` 在这段代码中,`points` 是一个包含点坐标的列表,其中每个点表示为一个二元组 `(x, y)`。`manhattan_distance_matrix` 函数接受这个点列表作为输入,并使用两层循环计算每对点之间的曼哈顿距离,并将结果存储在 `distance_matrix` 中。最后,通过遍历输出 `distance_matrix` 可以查看计算得到的曼哈顿距离矩阵。
相关问题

八数码问题曼哈顿距离 Python

八数码问题是一种经典的人工智能问题,它是一个数字拼图游戏,目标是将一个3x3的方格中的数字从初始状态移动到目标状态。其中,曼哈顿距离是一种常用的启发式函数,用于评估当前状态与目标状态之间的距离。在八数码问题中,曼哈顿距离指的是每个数字到其目标位置的横向和纵向距离之和。 在Python中,可以通过定义一个函数来计算曼哈顿距离。例如,假设当前状态为一个3x3的矩阵state,目标状态为一个3x3的矩阵goal,可以使用以下代码计算曼哈顿距离: ``` def manhattan_distance(state, goal): distance = 0 for i in range(3): for j in range(3): if state[i][j] != 0: x, y = divmod(goal.index(state[i][j]), 3) distance += abs(x - i) + abs(y - j) return distance ``` 其中,divmod函数用于计算目标状态中某个数字的位置,abs函数用于计算距离的绝对值。通过调用该函数,可以得到当前状态与目标状态之间的曼哈顿距离。

车辆行驶矩阵和行驶角度计算总共最短距离 代码python

车辆行驶的问题常常涉及到地图上的路径规划,其中一个常见的问题是确定从一个位置到另一个位置的最短路径,考虑到车辆只能按照特定的方向移动(如只能够向前、向左或向右)。在这种情况下,你可以使用A*搜索算法结合车辆转向限制来计算。假设我们有一个二维网格表示道路网络,每个单元格代表一个节点,我们可以用一个二维数组(vehicle_movement_matrix)来描述车辆可以从当前位置转到哪些相邻位置。 以下是一个简单的Python代码框架,用于计算最短路径: ```python from heapq import heappop, heappush # 定义车辆移动矩阵 vehicle_movement_matrix = { (0, -1): ['left'], # 向左 (-1, 0): ['forward'], # 向前 (0, 1): ['right'] # 向右 } def heuristic(a, b): # 估算曼哈顿距离或欧几里得距离作为启发式函数 x_diff, y_diff = b[0] - a[0], b[1] - a[1] return abs(x_diff) + abs(y_diff) def astar_search(grid, start, goal): frontier = [] heappush(frontier, (0, start)) came_from = {} cost_so_far = {} while frontier: _, current = heappop(frontier) if current == goal: break for next_pos, moves in vehicle_movement_matrix[current]: new_cost = cost_so_far[current] + 1 # 每一步加1,因为没有实际距离单位 if next_pos not in cost_so_far or new_cost < cost_so_far[next_pos]: cost_so_far[next_pos] = new_cost priority = new_cost + heuristic(goal, next_pos) heappush(frontier, (priority, next_pos)) came_from[next_pos] = current return came_from, cost_so_far # 示例使用 start = (0, 0) # 起始位置 goal = (n, m) # 终止位置 path, _ = astar_search(grid, start, goal) shortest_distance = sum(cost_so_far[goal]) print(f"从({start[0]}, {start[1]})到({goal[0]}, {goal[1]})的最短距离是:{shortest_distance}步") print("最短路径是通过以下位置:", path)
阅读全文

相关推荐

大家在看

recommend-type

SM621G1 BA 手册

SM621G1 BA 手册
recommend-type

离散控制Matlab代码-Controls:控制算法

离散控制Matlab代码控制项 该文件夹是控件中经常使用和需要的matlab程序的集合。 许多代码是由作者(Omkar P. Waghmare先生)在密歇根大学安阿伯分校期间开发的。其中一些文件取决于某些模型或其他mfile,但这很明显,并且可以由其他用户轻松修改。 。 作者在代码中掩盖了特定区域,用户可以在其中使更改者出于其目的使用此代码。 这是文件中存在的代码的列表以及有关它们的详细信息: eulerF.m->应用正向或显式euler方法对ODE方程进行积分/离散化。 spacecraft_attitude_dynamics.m->包含航天器姿态动力学 double_intg_pid.m->双积分器的动力学和PID控制 sim_double_intg->模拟Double Integrator(链接到3) Simulating_Vehicle_Cruise_Control.m->模拟车辆巡航控制动力学 KF_application_to_Vehicle_Cruise_Control.m->卡尔曼滤波器实现巡航控制 Cruise_Control_Simulink->具有定速巡航PID控
recommend-type

多模式准谐振反激式开关电源建模验证与容差分析-论文

多模式准谐振反激式开关电源建模验证与容差分析
recommend-type

【最全】全国各省市地区经纬度数据(Json格式)(共收录了3180个城市GPS坐标数据)(收录了全国所有市,区,县 GPS坐标)

(Json格式)全国所有城市经度维度坐标(共收录了3180个城市GPS坐标数据)(收录了全国所有市,区,县 GPS坐标)(包括港澳台)可以直接对应echarts的地图 | 全国所有城市GPS坐标 | 全国所有城市经纬度坐标
recommend-type

RTX 3.6 SDK 基于Windows实时操作系统

RTX 3.6 SDK

最新推荐

recommend-type

储能双向变流器,可实现整流器与逆变器控制,可实现整流与逆变,采用母线电压PI外环与电流内环PI控制,可整流也可逆变实现并网,实现能量双向流动,采用SVPWM调制方式 1.双向 2.SVPWM 3.双

储能双向变流器,可实现整流器与逆变器控制,可实现整流与逆变,采用母线电压PI外环与电流内环PI控制,可整流也可逆变实现并网,实现能量双向流动,采用SVPWM调制方式。 1.双向 2.SVPWM 3.双闭环 支持simulink2022以下版本,联系跟我说什么版本,我给转成你需要的版本(默认发2016b)。
recommend-type

LCC-LCC无线充电恒流 恒压闭环移相控制仿真 Simulink仿真模型,LCC-LCC谐振补偿拓扑,闭环移相控制 1. 输入直流电压350V,负载为切电阻,分别为50-60-70Ω,最大功率3.4

LCC-LCC无线充电恒流 恒压闭环移相控制仿真 Simulink仿真模型,LCC-LCC谐振补偿拓扑,闭环移相控制 1. 输入直流电压350V,负载为切电阻,分别为50-60-70Ω,最大功率3.4kW,最大效率为93.6%。 2. 闭环PI控制:设定值与反馈值的差通过PI环节,输出控制量限幅至0到1之间,控制逆变电路移相占空比。 3. 设置恒压值350V,恒流值7A。
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决
recommend-type

Linux C开发中,如何判断open()函数创建的fd没有被close()

在Linux C开发中,判断`open()`函数创建的文件描述符(file descriptor, fd)是否已经被`close()`通常涉及到检查该fd是否处于有效的状态。你可以通过以下几个步骤进行: 1. **检查fd是否为-1**:如果fd值为-1,这通常表示错误发生或者文件操作已经完成,它可能已经被关闭。 ```c if (fd == -1) { // 处理失败或已关闭的情况 } ``` 2. **检查errno**:系统调用返回-1并设置errno时,可以查阅相关的错误码来判断问题。比如,`ENOTTY`可能表示尝试访问非块设备,而这可能是由`close()`造成的。