用Python筛选出dataframe中时间列3秒内变化小于±5Nm的所有数据
时间: 2023-03-29 10:00:22 浏览: 153
python 处理dataframe中的时间字段方法
您好,我可以回答这个问题。您可以使用Python中的pandas库来筛选出dataframe中时间列3秒内变化小于±5Nm的所有数据。具体实现方法如下:
1. 首先,将时间列转换为datetime类型,并将其设置为dataframe的索引。
2. 然后,使用pandas的resample函数将数据按照3秒为一个时间段进行重采样,并计算每个时间段内的最大值和最小值。
3. 接着,使用pandas的shift函数将最大值和最小值分别向上和向下移动一行,以便进行后续的计算。
4. 最后,使用pandas的query函数筛选出变化小于±5Nm的所有数据。
具体代码如下:
import pandas as pd
# 读取数据
df = pd.read_csv('data.csv')
# 将时间列转换为datetime类型,并将其设置为dataframe的索引
df['time'] = pd.to_datetime(df['time'])
df.set_index('time', inplace=True)
# 按照3秒为一个时间段进行重采样,并计算每个时间段内的最大值和最小值
resampled = df.resample('3S').agg({'value': ['max', 'min']})
# 将最大值和最小值分别向上和向下移动一行
resampled['value_max_shifted'] = resampled['value']['max'].shift(1)
resampled['value_min_shifted'] = resampled['value']['min'].shift(-1)
# 筛选出变化小于±5Nm的所有数据
result = resampled.query('(value_max_shifted - value_min_shifted) <= 5 and (value_max_shifted - value_min_shifted) >= -5')
# 输出结果
print(result)
阅读全文