void LCD_Init(void) { IO_INIT(); //IO口初始化 P0SEL &= 0xFE; //让P0.0为普通IO口, P0DIR |= 0x01; //让P0.0为为输出 P1SEL &= 0x73; //让 P1.2 P1.3 P1.7为普通IO口 P1DIR |= 0x8C; //把 P1.2 P1.3 1.7设置为输出 LCD_SCL=1; LCD_RST=0; LCD_DLY_ms(50); LCD_RST=1; //从上电到下面开始初始化要有足够的时间,即等待RC复位完毕 LCD_WrCmd(0xae);//--turn off oled panel LCD_WrCmd(0x00);//---set low column address LCD_WrCmd(0x10);//---set high column address LCD_WrCmd(0x40);//--set start line address Set Mapping RAM Display Start Line (0x00~0x3F) LCD_WrCmd(0x81);//--set contrast control register LCD_WrCmd(0xcf); // Set SEG Output Current Brightness LCD_WrCmd(0xa1);//--Set SEG/Column Mapping 0xa0左右反置 0xa1正常 LCD_WrCmd(0xc8);//Set COM/Row Scan Direction 0xc0上下反置 0xc8正常 LCD_WrCmd(0xa6);//--set normal display LCD_WrCmd(0xa8);//--set multiplex ratio(1 to 64) LCD_WrCmd(0x3f);//--1/64 duty LCD_WrCmd(0xd3);//-set display offset Shift Mapping RAM Counter (0x00~0x3F) LCD_WrCmd(0x00);//-not offset LCD_WrCmd(0xd5);//--set display clock divide ratio/oscillator frequency LCD_WrCmd(0x80);//--set divide ratio, Set Clock as 100 Frames/Sec LCD_WrCmd(0xd9);//--set pre-charge period LCD_WrCmd(0xf1);//Set Pre-Charge as 15 Clocks & Discharge as 1 Clock LCD_WrCmd(0xda);//--set com pins hardware configuration LCD_WrCmd(0x12); LCD_WrCmd(0xdb);//--set vcomh LCD_WrCmd(0x40);//Set VCOM Deselect Level LCD_WrCmd(0x20);//-Set Page Addressing Mode (0x00/0x01/0x02) LCD_WrCmd(0x02);// LCD_WrCmd(0x8d);//--set Charge Pump enable/disable LCD_WrCmd(0x14);//--set(0x10) disable LCD_WrCmd(0xa4);// Disable Entire Display On (0xa4/0xa5) LCD_WrCmd(0xa6);// Disable Inverse Display On (0xa6/a7) LCD_WrCmd(0xaf);//--turn on oled panel LCD_Fill(0); //初始清屏 LCD_Set_Pos(0,0); }

时间: 2023-07-15 13:14:21 浏览: 107
这段代码是一个 OLED 显示屏的初始化函数,主要是对 OLED 的各种参数进行设置,包括显示模式、亮度、偏移量等。其中的 LCD_Fill(0) 函数是用来清屏的,将 OLED 上的所有像素点都设置为黑色。另外,LCD_Set_Pos(0,0) 函数是用来设置 OLED 的显示位置的,一般在初始化完成后会将光标移动到左上角。
相关问题

我的上电时钟初始化代码,不知道为什么这样设置波特率115200一直输出不正确。 void OSC_Init(void) { CLKCON &= ~0x40; while(SLEEP&0x40); CLKCON &= ~0x41; } void Usart0_Init(void) { IEN0&=0x7f; PERCFG&=0xfe; P0SEL=0x0c; //P0.2-P0.3为外设,其余为通用io P2DIR&= ~0XC0; U0CSR=0x80; U0UCR=0x00; U0GCR=0x20; U0GCR|=0x0c; //115200 U0BAUD=216; UTX0IF=0; URX0IF=0; URX0IE=1; EA=1; } 请问怎么设置时钟,或者是我串口0初始化设置错了吗?产品cc2511

您的串口初始化代码看起来没有问题,但是可能是时钟初始化设置有误导致串口输出不正确。您可以尝试在时钟初始化代码中增加对系统时钟频率的设置,例如: ``` void OSC_Init(void) { // 设置系统时钟频率为 24MHz CLKCON = (CLKCON & ~0x07) | 0x00; // 等待时钟稳定 while(!(CLKCON & 0x40)); // 设置时钟源为内部高速振荡器 CLKCON &= ~0x41; } ``` 另外,您可以检查一下您的调试工具或终端软件是否设置正确了波特率为115200。如果还是无法解决问题,您可以尝试降低波特率,例如9600或19200,看看是否能够正常输出。

void InitLED(uchar LEDx)//LED初始化函数 { if(LEDx == LED1) //P1_0 { P1SEL &= ~0x01; //仅将P1SEL第0位清0,P1_0定义为普通IO 1 << 0 是把1按2进制左移0位,结果还是 1 P1DIR |= 0x01; //仅将P1DIR第0位置1,P1_0定义为输出 } else if(LEDx == LED1) //P1_1 { P1SEL &= ~0x02; P1DIR |= 0x02; } }

在该函数中,if语句中的判断条件有误,造成了代码逻辑错误。第一个if语句中应该是判断LEDx是否为LED1,第二个else if语句中应该是判断LEDx是否为LED2。因此,正确的函数代码如下所示: ``` void InitLED(uchar LEDx)//LED初始化函数 { if(LEDx == LED1) //P1_0 { P1SEL &= ~0x01; //仅将P1SEL第0位清0,P1_0定义为普通IO P1DIR |= 0x01; //仅将P1DIR第0位置1,P1_0定义为输出 } else if(LEDx == LED2) //P1_1 { P1SEL &= ~0x02; P1DIR |= 0x02; } } ```

相关推荐

根据我给出的代码写出i2c.c代码 #include <iocc2530.h> #include "i2c.h" // 定义I2C引脚接口 #define SDA P0_3 #define SCL P0_2 // I2C初始化函数 void i2c_init() { // SDA和SCL配置为开漏输出 P0DIR &= ~(BV(2) | BV(3)); P0SEL &= ~(BV(2) | BV(3)); P0INP &= ~(BV(2) | BV(3)); // 配置I2C时钟和时序 I2CSP & = ~(BV(I2CSCLH) | BV(I2CSCLL) | BV(I2CSDA)); I2CSP |= BV(I2CSCLH) | BV(I2CSCLL) | BV(I2CSDA); // 使能I2C模块 I2CCFG |= BV(I2CEN); } // I2C读取数据函数 uint8_t i2c_read(uint8_t addr, uint8_t reg) { uint8_t data; uint8_t retry = 0; // 发送START信号 I2CSA = addr; I2CDS = reg; I2CCON |= BV(STA); // 等待START信号发送完成 while (I2CCON & BV(STA)) { retry++; if (retry > 200) { return 0xFF; // 通信超时 } } retry = 0; // 等待读取完成 while (!(I2CCFG & BV(I2CXIF))) { retry++; if (retry > 200) { return 0xFE; // 通信超时 } } data = I2CDS; // 发送STOP信号 I2CCON |= BV(STO); return data; } // 串口初始化函数 void uart_init() { // P0.2作为TX输出口,P0.3作为RX输入口 P0SEL |= BV(2) | BV(3); P2DIR &= ~(BV(0) | BV(1)); P2INP |= BV(0) | BV(1); // 将波特率设置为9600bps U0BAUD = 59; U0GCR |= BV(0); // 使能UART0模块及其中断 U0CSR |= BV(7) | BV(6) | BV(0); } // 通过串口输出数据函数 void uart_write(uint8_t data) { while (!(U0CSR & BV(1))); // 等待上一次发送完成 U0DBUF = data; } // 主函数 void main() { uint8_t voc_data; uint8_t co2_data; // 初始化I2C和串口 i2c_init(); uart_init(); // 读取VOC传感器数据 voc_data = i2c_read(0x31, 0x26); // 读取二氧化碳传感器数据 co2_data = i2c_read(0x76, 0x4B); // 通过串口输出读取到的数据 uart_write(voc_data); uart_write(co2_data); while (1) { // 不断读取并输出数据 voc_data = i2c_read(0x31, 0x26); co2_data = i2c_read(0x76, 0x4B); uart_write(voc_data); uart_write(co2_data); } }

优化这段代码//按键控制舵机 #include <msp430.h> #define CPU_F ((double)1000000) #define delay_us(x) __delay_cycles((long)(CPU_F*(double)x/1000000.0))//重新定义延时函数 #define delay_ms(x) __delay_cycles((long)(CPU_F*(double)x/1000.0)) void TimeA0__PWM_Init(void) { P1SEL |= BIT3; //IO口复用 P1DIR |= BIT3; TA0CTL = TASSEL__SMCLK + MC_3; //SMCLK,增减模式,计数到CCR0处 TA0CCR0 = 10000 - 1; // PWM周期为20ms,对应时钟频率为1MHz TA0CCR2 = 250; //将占空比设置为50% (TACCR0 - TACCR2) / TACCR0 = (20000 - 10000) / 20000 = 0.5 TA0CCTL2 = OUTMOD_6; //选择比较模式,模式6:Toggle/set } void set_servo_angle(float angle) { if (angle < 0.0f) { angle = 0.0f; // 最小角度限制 //非常好,12个是90度 } // else if (angle > 360.0f) // { // angle = 359.0f; // 最大角度限制 // } unsigned int position = (angle / 360.0f) * (1250 - 250) + 250; TA0CCR2 = position; // 设置脉冲宽度,对应舵机位置 __delay_cycles(10000); // 延时等待舵机调整到目标位置 } int main(void) { WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer TimeA0__PWM_Init(); P2DIR &= ~BIT1; // 设置P2.1为输入 P2REN |= BIT1; // 启用P2.1的上拉电阻 P2OUT |= BIT1; // 将P2.1的上拉电阻设置为上拉 unsigned int angle = 0; while(1) { set_servo_angle(angle); if ((P1IN & BIT1) == 0) // 检测按键是否按下 { angle += 10; // 每次按键增加10度 // if (angle > 360) // { // angle = 360; // 最大角度限制 // } set_servo_angle(angle); delay_ms(200); // 延时一段时间避免按键反弹 } } }

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。