tmp_mem=[tmp_mem;mem_p(id,:)];

时间: 2024-03-15 22:43:00 浏览: 26
这是一段 MATLAB 代码,用于将矩阵 mem_p 的第 id 行,按照之前排序的顺序,添加到矩阵 tmp_mem 的末尾。其中,id 是一个向量,表示之前排序后的索引值,mem_p 是一个矩阵,表示要添加的数据。根据 MATLAB 的语法,mem_p(id,:) 表示选取 mem_p 矩阵中的第 id 行数据,冒号表示选取该行的所有列。因此,tmp_mem=[tmp_mem;mem_p(id,:)] 就是将 mem_p 矩阵中排名前 N 的行数据添加到 tmp_mem 矩阵的末尾,实现了按照第一列数据降序排列的功能。
相关问题

tmp_mem=[tmp_mem;off_mem];

这是一个将两个矩阵连接起来的操作,具体来说,`tmp_mem`是一个存储父代和子代个体的类别归属信息矩阵,`off_mem`是新生成的子代个体类别归属信息矩阵。`tmp_mem=[tmp_mem;off_mem]`表示将`off_mem`矩阵连接在`tmp_mem`矩阵的下方,即将新生成的子代个体的类别归属信息加入到原有的父代个体的类别归属信息中。这个操作可以将交叉操作生成的子代个体的类别归属信息加入到父代个体的类别归属信息中,以备后续的选择和进化操作使用。

if mean(correct_rate)>=0.7 [C,B]=sort(mem_p1(:,1),'descend'); if length(idsp)>=N id=B(1:N); tmpparp=[tmpparp;tmpp(id,:)]; tmp_mem=[tmp_mem;mem_p(id,:)]; matingpopulation=INDIVIDUAL(tmpp(id,:),1);

这段代码看起来是遗传算法中的一个选择操作,其作用是从种群中选择最优秀的若干个个体作为下一代种群的父代,具体来说: - `mean(correct_rate)` 计算种群中所有个体的适应度得分的平均值。 - 如果适应度得分的平均值大于等于0.7,那么执行下一步操作。 - `sort(mem_p1(:,1),'descend')` 对种群中所有个体的适应度得分进行降序排列,并返回排列后的下标。 - `length(idsp)>=N` 判断当前种群大小是否大于等于需要选择的个体数量 `N`,如果是,则执行下一步操作。 - `id=B(1:N)` 从排列后的下标中选择前 `N` 个下标,即选择适应度得分最高的前 `N` 个个体作为下一代种群的父代。 - `tmpparp=[tmpparp;tmpp(id,:)]` 将选择出的父代个体的染色体拼接到 `tmpparp` 变量中。 - `tmp_mem=[tmp_mem;mem_p(id,:)]` 将选择出的父代个体的适应度得分拼接到 `tmp_mem` 变量中。 - `matingpopulation=INDIVIDUAL(tmpp(id,:),1)` 将选择出的父代个体初始化为 `INDIVIDUAL` 对象,并作为下一代种群的父代。 综上,这段代码的作用是从种群中选择适应度得分最高的若干个个体作为下一代种群的父代。

相关推荐

for i in range(n): if i % (n//10) == 0: print("%0.1f"%(i/n))#每当完成总任务的10%输出 if i> 0 and i % Delta == 0: # 索引从零开始计数 if Delta > 1: max_k = max(np.array(k_idx_his[-Delta:-1])%K) +1 else: max_k = k_idx_his[-1] +1 K = min(max_k +1, N)#根据历史记录动态调整K的值,以使其能够适应数据流的变化。如果数据流的变化比较平稳,则K的值不会经常变化,这样可以避免频繁的参数更新。如果数据流的变化比较剧烈,则K的值会相应地进行调整,以更好地适应新的数据分布 i_idx = i # 实时信道生成 h_tmp = racian_mec(h0,0.3)#使用Rician衰落模型后的增益值 # 将h0增长到1,以便更好的训练; 这是深度学习中广泛采用的一种技巧 h = h_tmp*CHFACT channel[i,:] = h #变量h_tmp乘以常数CHFACT,然后将结果存储到变量h中。接着,将h赋值给二维数组channel的第i行,获取信道增益值 # 实时到达生成 dataA[i,:] = np.random.exponential(arrival_lambda) # 4) LyDROO的排队模型 nn_input = h # 缩放Q和Y到接近1;深度学习技巧 nn_input =np.concatenate( (h, Q[i_idx,:]/10000,Y[i_idx,:]/10000)) # Actor module m_list = mem.decode(nn_input, K, decoder_mode) r_list = [] # 所有候选卸载模式的结果 v_list = [] # 候选卸载模式的目标值 for m in m_list: # Critic module # 为保存在m_list中的所有生成的卸载模式分配资源 r_list.append(Algo1_NUM(m,h,w,Q[i_idx,:],Y[i_idx,:],V)) v_list.append(r_list[-1][0]) # 记录最大奖励指数 k_idx_his.append(np.argmax(v_list)) # Policy update module # 编码最大奖励模式 mem.encode(nn_input, m_list[k_idx_his[-1]]) mode_his.append(m_list[k_idx_his[-1]])#将m_list最后一条历史消息添加到历史消息列表中。 # 存储最大结果 Obj[i_idx],rate[i_idx,:],energy[i_idx,:] = r_list[k_idx_his[-1]]#r_list[k_idx_his[-1]] 中的三个值分别赋值给了三个变量 Obj[i_idx]、rate[i_idx, :]、energy[i_idx, :]怎么修改代码使得结果中不考虑队列积压

static void pvq_pyr_project(const Word16 dim_proj, /* end vector dimension+1 */ const Word16 *xabs, /* absolute vector values */ Word32 L_xsum, /* absolute vector sum over dim */ Word16 num, /* target number of pulses */ Word16 * y, /* projected output vector */ Word16 *pulse_tot_ptr, Word32 *L_xy_ptr, /* accumulated correlation Q(in+0+1) = Qin+1 */ Word32 *L_yy_ptr /* accumulated energy Q0 */ ) { // pvq_pyr_project(dim, xabs, L_xsum, pulses_proj[0], y_far, &pulse_tot_far, &L_xy, // &L_yy); /* outlier submode projection */ Dyn_Mem_Deluxe_In( Counter i; Word32 L_tmp, L_num; Word16 den, shift_num, shift_den, shift_delta, proj_fac; ); *pulse_tot_ptr = 0; move16(); *L_xy_ptr = L_deposit_l(0); *L_yy_ptr = L_deposit_l(0); shift_den = norm_l(L_xsum); /* x_sum input Qin */ den = extract_h(L_shl_pos(L_xsum, shift_den)); /* now in Qin+shift_den */ L_num = L_deposit_l(num); shift_num = sub(norm_l(L_num), 1); L_num = L_shl_pos(L_num, shift_num); /* now in Q0 +shift_num -1 */ proj_fac = div_l(L_num, den); /* L_num always has to be less than den<<16 , norm_l-1 makes that happen */ shift_delta = sub(shift_num, shift_den); FOR (i = 0; i < dim_proj; i++) { L_tmp = L_mult(proj_fac, xabs[i]); /* Q shift_delta + PVQ_SEARCH_QIN */ y[i] = extract_h(L_shr(L_tmp, shift_delta)); move16(); /* to Q0 with floor , and potential sturation */ ; *pulse_tot_ptr = add(*pulse_tot_ptr, y[i]); /* Q0 */ *L_yy_ptr = L_mac0(*L_yy_ptr, y[i], y[i]); /* Energy, Q0 */ *L_xy_ptr = L_mac(*L_xy_ptr, xabs[i], y[i]); /* Corr, Q0*Q12 +1 --> Q13 */ } Dyn_Mem_Deluxe_Out(); }

最新推荐

recommend-type

mysql read_buffer_size 设置多少合适

8. `innodb_additional_mem_pool_size`:20MB过小,提升至128MB,用于InnoDB内部数据结构。 9. `join_buffer_size`:这个参数很重要,尤其涉及JOIN操作,如果未设置,应添加并设为8MB。 请注意,这些优化建议是基于...
recommend-type

mysql_配置详细说明.docx

15. **tmp_table_size**和**max_heap_table_size**:这两个参数决定了内存中临时表的最大大小,对处理大型数据集时的性能有直接影响。 16. **thread_cache_size**:缓存线程的数量,减少创建新线程的开销。 17. **...
recommend-type

地县级城市建设道路清扫保洁面积 道路清扫保洁面积道路机械化清扫保洁面积 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

从网站上学习到了路由的一系列代码

今天的学习圆满了
recommend-type

基于AT89C51单片机的可手动定时控制的智能窗帘设计.zip-11

压缩包构造:程序、仿真、原理图、pcb、任务书、结构框图、流程图、开题文档、设计文档、元件清单、实物图、焊接注意事项、实物演示视频、运行图片、功能说明、使用前必读。 仿真构造:AT89C51,LCD液晶显示器,5功能按键,步进器,灯。 代码文档:代码1024行有注释;设计文档18819字。 功能介绍:系统具有手动、定时、光控、温控和湿度控制五种模式。在手动模式下,两个按钮可控制窗帘的开合;定时模式下,根据预设时间自动开合窗帘;光控模式下,当光照超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭;温控模式下,当温度超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭;湿度控制模式下,当湿度超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭。按钮可用于调节阈值、选择模式、设置时间等。
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。