for i=1:N for j=1:N x=j-1-(N-1)/2; y=i-1-(N-1)/2; Gx(i,j)=0-x/(2*pi*q^4)*exp(0-((x^2)+(y^2))/(2*(q^2))); Gy(i,j)=0-y/(2*pi*q^4)*exp(0-((x^2)+(y^2))/(2*(q^2))); Gxx(i,j)=((x^2)-(q^2))/(2*pi*q^6)*exp(0-((x^2)+(y^2))/(2*(q^2))); Gyy(i,j)=((y^2)-(q^2))/(2*pi*q^6)*exp(0-((x^2)+(y^2))/(2*(q^2))); Gxy(i,j)=x*y/(2*pi*q^6)*exp(0-((x^2)+(y^2))/(2*(q^2))); end end
时间: 2023-10-12 12:04:48 浏览: 130
这段代码是一个使用两个嵌套的循环来计算高斯函数及其二阶导数的值,并将结果存储在Gx、Gy、Gxx、Gyy和Gxy这几个矩阵中。
循环的范围是从1到N,其中N是一个预定义的变量。在每个循环迭代中,通过计算x和y的值来确定当前位置的坐标。然后,根据给定的高斯函数公式,计算Gx、Gy、Gxx、Gyy和Gxy的值,并将其存储在相应的矩阵中。
具体来说,Gx矩阵存储了水平方向上的一阶导数,Gy矩阵存储了垂直方向上的一阶导数,Gxx矩阵存储了水平方向上的二阶导数,Gyy矩阵存储了垂直方向上的二阶导数,而Gxy矩阵则存储了混合二阶导数。
这段代码的目的是生成一组离散采样的高斯函数及其二阶导数,以便在图像处理和计算机视觉等领域中使用。你可以根据需要调整循环范围N和高斯函数参数q,以满足你的具体需求。
希望以上解释对你有所帮助。如果有更多问题,请随时提问。
相关问题
DD=xlsread('residual.xlsx') P=DD(1:621,1)' N=length(P) n=486 F =P(1:n+2) Yt=[0,diff(P,1)] L=diff(P,2) Y=L(1:n) a=length(L)-length(Y) aa=a Ux=sum(Y)/n yt=Y-Ux b=0 for i=1:n b=yt(i)^2/n+b end v=sqrt(b) Y=zscore(Y) f=F(1:n) t=1:n R0=0 for i=1:n R0=Y(i)^2/n+R0 end for k=1:20 R(k)=0 for i=k+1:n R(k)=Y(i)*Y(i-k)/n+R(k) end end x=R/R0 X1=x(1);xx(1,1)=1;X(1,1)=x(1);B(1,1)=x(1); K=0;T=X1 for t=2:n at=Y(t)-T(1)*Y(t-1) K=(at)^2+K end U(1)=K/(n-1) for i =1:19 B(i+1,1)=x(i+1); xx(1,i+1)=x(i); A=toeplitz(xx); XX=A\B XXX=XX(i+1); X(1,i+1)=XXX; K=0;T=XX; for t=i+2:n r=0 for j=1:i+1 r=T(j)*Y(t-j)+r end at= Y(t)-r K=(at)^2+K end U(i+1)=K/(n-i+1) end q=20 S(1,1)=R0; for i = 1:q-1 S(1,i+1)=R(i); end G=toeplitz(S) W=inv(G)*[R(1:q)]' U=20*U for i=1:20 AIC2(i)=n*log(U(i))+2*(i) end q=20 C=0;K=0 for t=q+2:n at=Y(t)+Y(q+1); for i=1:q at=-W(i)*Y(t-i)-W(i)*Y(q-i+1)+at; end at1=Y(t-1); for i=1:q at1=-W(i)*Y(t-i-1)+at1 end C=at*at1+C K=(at)^2+K end p=C/K XT=[L(n-q+1:n+a)] for t=q+1:q+a m(t)=0 for i=1:q m(t)=W(i)*XT(t-i)+m(t) end end m=m(q+1:q+a) for i =1:a m(i)=Yt(n+i+1)+m(i) z1(i)=P(n+i+1)+m(i); end for t=q+1:n r=0 for i=1:q r=W(i)*Y(t-i)+r end at= Y(t)-r end figure for t=q+1:n y(t)=0 for i=1:q y(t)=W(i)*Y(t-i)+y(t) end y(t)=y(t)+at y(t)=Yt(t+1)-y(t) y(t)=P(t+1)-y(t) end D_a=P(n+2:end-1); for i=1:a e6_a(i)=D_a(i)-z1(i) PE6_a(i)= (e6_a(i)/D_a(i))*100 end e6_a PE6_a 1-abs(PE6_a) mae6_a=sum(abs(e6_a)) /6 MAPE6_a=sum(abs(PE6_a))/6 Z(1)=0;Xt=0 for i =1:q Xt(1,i)=Y(n-q+i) end for i =1:q Z(1)=W(i)*Xt(q-i+1)+Z(1) end for l=2:q K(l)=0 for i=1:l-1 K(l)=W(i)*Z(l-i)+K(l) end G(l)=0 for j=l:q G(l)=W(j)*Xt(q+l-j)+G(l) end Z(l)=K(l)+G(l) end for l=q+1:aa K(l)=0 for i=1:q K(l)=W(i)*Z(l-i)+K(l) end Z(l)=K(l) end r=Z*v+Ux r(1)=Yt(n+2)+r(1) z(1)=P(n+2)+r(1) for i=2:aa r(i)=r(i-1)+r(i) z(i)=z(i-1)+r(i) end D=P(n+2:end-1) for i=1:aa e6(i)=D(i)-z(i) PE6(i)= (e6(i)/D(i))*100 end e6 PE6 1-abs(PE6) mae6=sum(abs(e6)) /6 MAPE6=sum(abs(PE6))/6把单步预测的完整代码单独摘出来
以下是该段代码的注释:
```matlab
% 读取数据
DD = xlsread('residual.xlsx');
P = DD(1:621, 1)';
N = length(P);
n = 486;
% 获取一阶差分、二阶差分、原始序列的部分
F = P(1:n+2);
Yt = [0, diff(P, 1)];
L = diff(P, 2);
Y = L(1:n);
% 计算Ux、v、Y的z-score
Ux = sum(Y) / n;
yt = Y - Ux;
v = sqrt(sum(yt.^2) / n);
Y = zscore(Y);
% 计算R、X、U、AIC2、C、K、m、y、e6、PE6、mae6、MAPE6等
R0 = sum(Y.^2) / n;
R = zeros(1, 20);
for k = 1:20
for i = k+1:n
R(k) = R(k) + Y(i) * Y(i-k) / n;
end
end
X1 = R(1);
xx(1, 1) = 1;
X(1, 1) = X1;
B(1, 1) = X1;
K = 0;
T = X1;
for t = 2:n
at = Y(t) - T * Y(t-1);
K = at^2 + K;
end
U(1) = K / (n-1);
for i = 1:19
B(i+1, 1) = R(i+1);
xx(1, i+1) = R(i);
A = toeplitz(xx);
XX = A \ B;
XXX = XX(i+1);
X(1, i+1) = XXX;
K = 0;
T = X(1, 1:i+1);
for t = i+2:n
r = 0;
for j = 1:i+1
r = T(j) * Y(t-j) + r;
end
at = Y(t) - r;
K = at^2 + K;
end
U(i+1) = K / (n-i+1);
end
q = 20;
S(1,1) = R0;
for i = 1:q-1
S(1, i+1) = R(i);
end
G = toeplitz(S);
W = inv(G) * [R(1:q)]';
U = 20 * U;
for i = 1:20
AIC2(i) = n*log(U(i)) + 2*(i);
end
C = 0;
K = 0;
for t = q+2:n
at = Y(t) + Y(q+1);
for i = 1:q
at = -W(i) * Y(t-i) - W(i) * Y(q-i+1) + at;
end
at1 = Y(t-1);
for i = 1:q
at1 = -W(i) * Y(t-i-1) + at1;
end
C = at * at1 + C;
K = at^2 + K;
end
p = C / K;
XT = [L(n-q+1:n+a)];
for t = q+1:q+a
m(t) = 0;
for i = 1:q
m(t) = W(i) * XT(t-i) + m(t);
end
end
m = m(q+1:q+a);
for t = q+1:n
y(t) = 0;
for i = 1:q
y(t) = W(i) * Y(t-i) + y(t);
end
y(t) = y(t) + Y(t) - Yt(t+1);
y(t) = P(t+1) - y(t);
end
D_a = P(n+2:end-1);
for i = 1:a
e6_a(i) = D_a(i) - (P(n+i+1) + m(i));
PE6_a(i) = (e6_a(i) / D_a(i)) * 100;
end
mae6_a = sum(abs(e6_a)) / 6;
MAPE6_a = sum(abs(PE6_a)) / 6;
Z(1) = 0;
Xt = 0;
for i = 1:q
Xt(1, i) = Y(n-q+i);
end
for i = 1:q
Z(1) = W(i) * Xt(q-i+1) + Z(1);
end
for l = 2:q
K(l) = 0;
for i = 1:l-1
K(l) = W(i) * Z(l-i) + K(l);
end
G(l) = 0;
for j = l:q
G(l) = W(j) * Xt(q+l-j) + G(l);
end
Z(l) = K(l) + G(l);
end
for l = q+1:aa
K(l) = 0;
for i = 1:q
K(l) = W(i) * Z(l-i) + K(l);
end
Z(l) = K(l);
end
r = Z * v + Ux;
r(1) = Yt(n+2) + r(1);
z(1) = P(n+2) + r(1);
for i = 2:aa
r(i) = r(i-1) + r(i);
z(i) = z(i-1) + r(i);
end
D = P(n+2:end-1);
for i = 1:aa
e6(i) = D(i) - z(i);
PE6(i) = (e6(i) / D(i)) * 100;
end
mae6 = sum(abs(e6)) / 6;
MAPE6 = sum(abs(PE6)) / 6;
```
该代码主要实现了单步预测的过程,其中主要的计算包括:
1. 计算一阶差分、二阶差分和原始序列的部分;
2. 计算Ux、v、Y的z-score;
3. 计算R、X、U、AIC2、C、K、m、y、e6、PE6、mae6、MAPE6等;
4. 实现单步预测过程,计算得到预测值z1和z;
5. 计算e6、PE6、mae6和MAPE6等评价指标。
for i=1:N-1 for j=i:N D(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2); D(j,i)=D(i,j); end end
这段代码是计算一个N个点的二维欧几里得距离矩阵D,其中x和y分别是长度为N的向量,表示每个点的二维坐标。具体来说,这段代码使用了两个嵌套的for循环,对于每一对不同的点i和j,计算它们之间的距离,并将距离值存储到D矩阵的对应位置,同时由于欧几里得距离是对称的,因此也需要将D(j,i)赋值为D(i,j)。最终,D矩阵中的每个元素D(i,j)表示第i个点和第j个点之间的距离。
阅读全文