用matlab写一段CMA-ES代码
时间: 2024-03-13 12:23:28 浏览: 187
CMAcode.rar_CMA-ES MATLAB_CMAcode_CMA算法_cma matlab代码_mimo
5星 · 资源好评率100%
以下是一个简单的CMA-ES(协方差矩阵适应进化策略)的Matlab代码:
```matlab
function [best, fval] = cmaes(fitnessfcn, x0, sigma0, options)
% 输入:
% fitnessfcn: 目标函数句柄
% x0: 初始解向量
% sigma0: 初始步长
% options: 设置参数的结构体
% 输出:
% best: 最优解向量
% fval: 最优解对应的目标函数值
% 初始化参数
n = length(x0);
lambda = 4 + floor(3*log(n));
mu = floor(lambda/2);
weights = log(mu+1/2)-log(1:mu)';
mu_eff = sum(weights)^2/sum(weights.^2);
cc = (4 + mu_eff/n) / (n+4 + 2*mu_eff/n);
cs = (mu_eff+2) / (n+mu_eff+5);
c1 = 2 / ((n+1.3)^2+mu_eff);
cmu = min(1-c1, 2 * (mu_eff-2+1/mu_eff) / ((n+2)^2+mu_eff));
damps = 1 + 2*max(0, sqrt((mu_eff-1)/(n+1))-1) + cs;
% 初始化种群和协方差矩阵
xmean = x0;
ps = zeros(n, 1);
pc = zeros(n, 1);
C = eye(n);
B = eye(n);
D = ones(n, 1);
sigma = sigma0;
counteval = 0;
% 开始迭代
for i = 1:options.MaxIterations
% 生成新的种群
arx = repmat(xmean, 1, lambda) + sigma * (B * diag(D) * randn(n, lambda));
arfitness = zeros(lambda, 1);
for j = 1:lambda
arfitness(j) = fitnessfcn(arx(:, j));
counteval = counteval + 1;
end
% 更新最优解
[arfitness, arindex] = sort(arfitness);
best = arx(:, arindex(1));
fval = arfitness(1);
% 更新协方差矩阵
ps = (1-cs)*ps + sqrt(cs*(2-cs)*mu_eff)*(B*diag(D))*(arx(:, arindex(1:mu))-repmat(xmean, 1, mu)) / sigma;
hsig = norm(ps) / sqrt(1-(1-cs)^(2*counteval/lambda)) < (1.4 + 2/(n+1));
pc = (1-cc)*pc + hsig*sqrt(cc*(2-cc)*mu_eff)*(arx(:, arindex(1:mu))*weights) / sigma;
C = (1-c1-cmu)*C + c1*(pc*pc' + (1-hsig)*cc*(2-cc)*C) + cmu*(arx(:, arindex(1:mu))*diag(weights)*arx(:, arindex(1:mu))');
% 更新步长和均值
sigma = sigma * exp((cs/damps)*(norm(ps)/sqrt(n))-1);
if mod(counteval/lambda, n/10) < 1
C = triu(C) + triu(C,1)';
[B, D] = eig(C);
D = sqrt(diag(D));
xmean = arx(:, arindex(1:mu)) * weights;
end
% 检查是否收敛
if fval <= options.FunctionTolerance
break;
end
end
end
```
需要注意的是,这只是一个简单的实现,可能存在性能问题和不够健壮的情况。在实际应用中需要根据具体问题进行调整和优化。
阅读全文