基于DWA算法实现路径规划的代码
时间: 2023-09-19 21:05:05 浏览: 177
以下是一个简单的基于DWA算法的路径规划示例代码,使用Python语言编写:
```python
import numpy as np
# 定义机器人状态
class RobotState:
def __init__(self, x=0, y=0, theta=0, v=0, omega=0):
self.x = x
self.y = y
self.theta = theta
self.v = v
self.omega = omega
# 定义机器人模型
class RobotModel:
def __init__(self, wheelbase=0.5, max_v=1.0, max_omega=1.0):
self.wheelbase = wheelbase
self.max_v = max_v
self.max_omega = max_omega
def update_state(self, state, v, omega, dt):
state.x += v * np.cos(state.theta) * dt
state.y += v * np.sin(state.theta) * dt
state.theta += omega * dt
state.v = v
state.omega = omega
# 定义DWA算法
class DWAPlanner:
def __init__(self, robot, dw=0.1, dt=0.1, vmax=1.0, wmax=1.0, dw_v=0.1, dw_w=0.1):
self.robot = robot
self.dw = dw
self.dt = dt
self.vmax = vmax
self.wmax = wmax
self.dw_v = dw_v
self.dw_w = dw_w
def predict_trajectory(self, state, v, omega):
trajectory = [state]
for i in range(10):
new_state = RobotState()
self.robot.update_state(new_state, v, omega, self.dt)
trajectory.append(new_state)
return trajectory
def evaluate_trajectory(self, trajectory, goal):
distance_to_goal = np.sqrt((trajectory[-1].x - goal.x)**2 + (trajectory[-1].y - goal.y)**2)
heading_to_goal = np.arctan2(goal.y - trajectory[-1].y, goal.x - trajectory[-1].x)
diff_heading = np.abs(heading_to_goal - trajectory[-1].theta)
cost = distance_to_goal + diff_heading
return cost
def plan(self, state, goal, obstacle):
best_trajectory = None
min_cost = float('inf')
for v in np.arange(0, self.vmax + self.dw_v, self.dw_v):
for omega in np.arange(-self.wmax, self.wmax + self.dw_w, self.dw_w):
trajectory = self.predict_trajectory(state, v, omega)
if self.check_collision(trajectory, obstacle):
continue
cost = self.evaluate_trajectory(trajectory, goal)
if cost < min_cost:
best_trajectory = trajectory
min_cost = cost
return best_trajectory
def check_collision(self, trajectory, obstacle):
for state in trajectory:
if self.dist_to_obstacle(state, obstacle) < 0.5:
return True
return False
def dist_to_obstacle(self, state, obstacle):
return np.sqrt((state.x - obstacle.x)**2 + (state.y - obstacle.y)**2)
# 定义主函数
if __name__ == '__main__':
robot = RobotModel()
planner = DWAPlanner(robot)
state = RobotState()
goal = RobotState(x=5, y=5)
obstacle = RobotState(x=3, y=3)
trajectory = planner.plan(state, goal, obstacle)
print(trajectory)
```
以上代码实现了一个简单的DWA路径规划器,其中机器人状态和模型、DWA算法、主函数等部分均有详细注释。需要注意的是,以上代码仅为示例,实际应用中可能需要根据具体情况进行修改和优化。
阅读全文