我需要stm32精英版开发板来写一个程序,达到通过串口向上位机发送数据,数据内容为时间,格式按x:xxcxx显示,时间数据应为实时变化数据。串口功能通过KEYo控制,当KEYo按下时串口开始发送,当再次按下时串口停止发送的效果,代码是怎么样的
时间: 2024-05-02 21:23:43 浏览: 131
您需要使用C语言编写程序,首先需要初始化串口并配置为指定波特率。然后可以使用定时器中断获取当前时间,并将其格式化为x:xxcxx的形式。KEY0的按下可以通过GPIO中断来检测,当KEY0被按下时,启动串口发送数据,再次按下KEY0则停止发送。
以下是可能的代码实现:
```c
// 引入必要的头文件
#include "stm32f4xx.h"
#include <stdio.h>
// 定义串口号和波特率
#define USARTx USART1
#define BAUDRATE 115200
// 定义GPIO和中断号
#define KEY0_GPIO_PORT GPIOA
#define KEY0_GPIO_PIN GPIO_Pin_0
#define KEY0_EXTI_LINE EXTI_Line0
#define KEY0_IRQn EXTI0_IRQn
// 全局变量
volatile int send_data = 0; // 是否正在发送数据
volatile char time_str[9]; // 格式化后的时间字符串,需要在定时器中断中更新
// 串口发送函数
void USART_SendString(char* str) {
while (*str) {
while (USART_GetFlagStatus(USARTx, USART_FLAG_TXE) == RESET); // 等待发送缓冲区空
USART_SendData(USARTx, *str++);
}
}
// 初始化串口函数
void USART_Config(void) {
USART_InitTypeDef USART_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
// 配置TX引脚
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_USART1);
// 配置RX引脚
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_USART1);
// 配置串口
USART_InitStructure.USART_BaudRate = BAUDRATE; // 波特率
USART_InitStructure.USART_WordLength = USART_WordLength_8b; // 数据位长度
USART_InitStructure.USART_StopBits = USART_StopBits_1; // 停止位
USART_InitStructure.USART_Parity = USART_Parity_No; // 校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 硬件流控
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; // 发送和接收
USART_Init(USARTx, &USART_InitStructure);
USART_Cmd(USARTx, ENABLE);
// 接收中断
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
USART_ITConfig(USARTx, USART_IT_RXNE, ENABLE);
}
// 初始化GPIO和中断函数
void KEY0_Config(void) {
GPIO_InitTypeDef GPIO_InitStructure;
EXTI_InitTypeDef EXTI_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);
GPIO_InitStructure.GPIO_Pin = KEY0_GPIO_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(KEY0_GPIO_PORT, &GPIO_InitStructure);
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOA, EXTI_PinSource0);
EXTI_InitStructure.EXTI_Line = KEY0_EXTI_LINE;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling_Rising;
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = KEY0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
// 获取当前时间的函数
void get_time(void) {
RTC_TimeTypeDef time;
RTC_GetTime(RTC_Format_BIN, &time);
sprintf(time_str, "%01d:%02d:%02d", time.RTC_Hours, time.RTC_Minutes, time.RTC_Seconds);
}
// 定时器中断,用来更新时间字符串
void TIM2_IRQHandler(void) {
if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET)
{
get_time();
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
}
}
// 执行串口发送数据
void send_serial_data(void) {
send_data = 1;
while (send_data) {
USART_SendString(time_str);
USART_SendString("\r\n"); // 换行符,方便查看
delay_ms(1000); // 每隔1s发送一次时间
}
}
// 停止串口发送数据
void halt_serial_data(void) {
send_data = 0;
}
// KEY0中断函数,用来控制串口数据发送的开始和停止
void EXTI0_IRQHandler(void) {
if (EXTI_GetITStatus(KEY0_EXTI_LINE) != RESET) {
EXTI_ClearITPendingBit(KEY0_EXTI_LINE);
if (GPIO_ReadInputDataBit(KEY0_GPIO_PORT, KEY0_GPIO_PIN) == Bit_RESET) {
// KEY0被按下
send_serial_data();
} else {
// KEY0被释放
halt_serial_data();
}
}
}
int main(void) {
// 初始化RTC时钟源,定时器和GPIO
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
PWR_BackupAccessCmd(ENABLE);
RCC_LSEConfig(RCC_LSE_ON);
while (!RCC_GetFlagStatus(RCC_FLAG_LSERDY));
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);
RCC_RTCCLKCmd(ENABLE);
RTC_WaitForSynchro();
RTC_StructInit(&RTC_InitStructure);
RTC_InitStructure.RTC_HourFormat = RTC_HourFormat_24;
RTC_InitStructure.RTC_AsynchPrediv = 0x7F;
RTC_InitStructure.RTC_SynchPrediv = 0x00FF;
RTC_Init(&RTC_InitStructure);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = 999;
TIM_TimeBaseStructure.TIM_Prescaler = 41999;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
TIM_Cmd(TIM2, ENABLE);
USART_Config();
KEY0_Config();
while (1) {
// 主循环,什么也不干
}
}
```
这段代码实现了一个简单的串口发送程序,可以在STM32F407VET6开发板上运行。
阅读全文
相关推荐















