用python写一段遗传算法优化
时间: 2023-02-27 16:05:47 浏览: 101
答案:可以使用Python来编写遗传算法优化的代码,如下:# 遗传算法优化
def geneticAlgorithm(population, fitness_fn, mutation_rate):
for generation in range(num_generations):
# 计算适应度
fitness_values = [fitness_fn(chromosome) for chromosome in population]
# 选择
selected = selection(population, fitness_values)
# 重组
population = crossover(selected)
# 变异
population = mutation(population, mutation_rate)
# 返回最优解
return population[0]
相关问题
用python写一段遗传算法优化SVM惩罚参数c和核参数gamma,并输出识别正确率和混淆矩阵的代码
好的,以下是遗传算法优化SVM参数的Python代码:
```python
import numpy as np
from sklearn import svm, datasets
from sklearn.metrics import accuracy_score, confusion_matrix
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 定义适应度函数
def fitness(params):
c, gamma = params
clf = svm.SVC(C=c, gamma=gamma)
clf.fit(X, y)
y_pred = clf.predict(X)
return accuracy_score(y, y_pred)
# 遗传算法参数设置
pop_size = 50 # 种群大小
chrom_length = 2 # 染色体长度
pc = 0.8 # 交叉概率
pm = 0.1 # 变异概率
max_iter = 100 # 最大迭代次数
min_fit = 0.99 # 最小适应度值
# 初始化种群
pop = np.random.rand(pop_size, chrom_length) * 10
# 遗传算法迭代
for i in range(max_iter):
# 计算适应度值
fits = np.array([fitness(params) for params in pop])
# 选择
idx = np.argsort(-fits) # 适应度值从大到小排序
pop = pop[idx]
fits = fits[idx]
if fits[0] >= min_fit:
break
# 交叉
for j in range(int(pop_size/2)):
if np.random.rand() < pc:
k = np.random.randint(chrom_length)
temp = pop[j, k]
pop[j, k] = pop[j+pop_size//2, k]
pop[j+pop_size//2, k] = temp
# 变异
for j in range(pop_size):
if np.random.rand() < pm:
k = np.random.randint(chrom_length)
pop[j, k] += np.random.normal(0, 1)
if pop[j, k] < 0:
pop[j, k] = 0
elif pop[j, k] > 10:
pop[j, k] = 10
# 输出结果
best_params = pop[0]
c, gamma = best_params
clf = svm.SVC(C=c, gamma=gamma)
clf.fit(X, y)
y_pred = clf.predict(X)
print('最优参数:C={:.4f},gamma={:.4f}'.format(c, gamma))
print('识别正确率:{:.4f}'.format(accuracy_score(y, y_pred)))
print('混淆矩阵:\n', confusion_matrix(y, y_pred))
```
代码说明:
- 加载鸢尾花数据集作为示例数据;
- 定义适应度函数 `fitness`,其中 `params` 参数为一个二元组,表示 SVM 模型的惩罚参数和核参数;
- 初始化遗传算法参数,并生成随机初始种群;
- 进行遗传算法迭代,每次迭代包括选择、交叉和变异三个步骤;
- 输出最优参数、识别正确率和混淆矩阵。
注意事项:
- 本代码仅用于演示,实际应用中需要根据具体情况进行修改;
- 由于遗传算法的随机性,结果可能存在一定波动,建议多次运行取平均值。
用Python写一段遗传算法
好的,下面是一个简单的遗传算法的Python代码示例:
```python
import random
# 遗传算法的参数设置
POPULATION_SIZE = 10 # 种群数量
CROSSOVER_PROBABILITY = 0.8 # 交叉概率
MUTATION_PROBABILITY = 0.2 # 变异概率
GENERATIONS = 10 # 迭代次数
# 假设我们要优化的函数为 f(x) = x^2
def objective_function(x):
return x**2
# 初始化种群,每个个体随机生成一个 x 值
def initialize_population():
population = []
for i in range(POPULATION_SIZE):
x = random.uniform(-10, 10)
population.append({'x': x, 'fitness': None})
return population
# 计算个体的适应度
def calculate_fitness(individual):
x = individual['x']
fitness = objective_function(x)
individual['fitness'] = fitness
return fitness
# 选择操作,使用轮盘赌选择算法
def selection(population):
total_fitness = sum([individual['fitness'] for individual in population])
selected_individuals = []
for i in range(POPULATION_SIZE):
pick = random.uniform(0, total_fitness)
current = 0
for individual in population:
current += individual['fitness']
if current > pick:
selected_individuals.append(individual)
break
return selected_individuals
# 交叉操作,使用单点交叉算法
def crossover(parent1, parent2):
if random.random() < CROSSOVER_PROBABILITY:
crossover_point = random.randint(0, 1)
child1 = {'x': None, 'fitness': None}
child2 = {'x': None, 'fitness': None}
child1['x'] = parent1['x'][0:crossover_point] + parent2['x'][crossover_point:]
child2['x'] = parent2['x'][0:crossover_point] + parent1['x'][crossover_point:]
return child1, child2
else:
return parent1, parent2
# 变异操作,使用随机变异算法
def mutation(child):
if random.random() < MUTATION_PROBABILITY:
mutation_point = random.randint(0, len(child['x'])-1)
child['x'][mutation_point] = random.uniform(-10, 10)
return child
# 遗传算法主程序
def genetic_algorithm():
# 初始化种群
population = initialize_population()
# 迭代
for i in range(GENERATIONS):
# 计算个体适应度
for individual in population:
calculate_fitness(individual)
# 选择
selected_individuals = selection(population)
# 交叉
children = []
for i in range(0, POPULATION_SIZE, 2):
child1, child2 = crossover(selected_individuals[i], selected_individuals[i+1])
children.append(mutation(child1))
children.append(mutation(child2))
# 替换原始种群
population = children
# 返回最优解
best_individual = max(population, key=lambda x: x['fitness'])
return best_individual['x']
```
上述代码实现了一个简单的遗传算法,用于求解 $f(x)=x^2$ 函数在 $[-10, 10]$ 区间内的最大值。在遗传算法的迭代过程中,每个个体表示为一个字典,包含一个 x 值和一个适应度值。在初始化种群时,随机生成每个个体的 x 值;在计算适应度时,根据目标函数计算个体的适应度;在选择操作中,使用轮盘赌选择算法选择个体;在交叉操作中,使用单点交叉算法对个体进行交叉;在变异操作中,使用随机变异算法对个体进行变异。最终返回种群中适应度最高的个体的 x 值作为最优解。
阅读全文