transformer cnn
时间: 2023-10-16 12:08:58 浏览: 113
Transformer 和 CNN 是两种常见的神经网络架构,用于自然语言处理和计算机视觉任务。它们有一些相似之处,但也有一些重要的区别。
Transformer 是一种基于自注意力机制的神经网络架构,最初用于机器翻译任务。它通过在输入序列中的不同位置之间建立关联,从而能够捕捉到长距离依赖关系。Transformer 的核心组件是多头注意力机制和前馈神经网络。多头注意力机制允许模型同时关注输入序列中的不同位置,而前馈神经网络用于对每个位置进行非线性变换。Transformer 在自然语言处理任务中取得了显著的成果,如机器翻译、文本生成和问答系统等。
CNN(卷积神经网络)是一种广泛应用于计算机视觉领域的神经网络架构。CNN 使用卷积层来提取图像中的局部特征,并通过池化层进行降维和特征选取。这些特征经过全连接层进行分类或回归。CNN 在图像分类、目标检测和图像生成等任务中取得了重大突破。
虽然 Transformer 主要应用于自然语言处理任务,而 CNN 主要应用于计算机视觉任务,但两者也有一些重叠的应用领域,例如图像字幕生成和文本分类任务。
相关问题
transformer cnn cvt
这三个词都是深度学习中常见的模型结构。
Transformer是一种基于自注意力机制的神经网络模型,最初用于自然语言处理任务,如机器翻译和文本生成。它的优点是能够处理长序列数据,同时避免了传统的循环神经网络中的梯度消失问题。
CNN(卷积神经网络)是一种常用于图像处理任务的神经网络模型,它通过卷积操作提取图像中的特征,并通过池化操作减少特征数量。CNN在图像分类、目标检测等任务中表现出色。
CVT(Convolutional Vision Transformer)是一种结合了CNN和Transformer的模型,它在CNN中引入了Transformer中的自注意力机制,以更好地处理图像中的长程依赖关系。
Transformer cnn代码
以下是一个简单的 Transformer + CNN 的代码示例,用于文本分类任务:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class TransformerCNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, num_classes, max_seq_len, num_filters, filter_sizes, num_heads, hidden_dim, dropout):
super(TransformerCNN, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.pos_encoding = PositionalEncoding(embedding_dim, max_seq_len)
self.transformer_encoder = nn.TransformerEncoder(
nn.TransformerEncoderLayer(embedding_dim, num_heads, hidden_dim, dropout),
num_layers=2)
self.convs = nn.ModuleList([
nn.Conv2d(1, num_filters, (k, embedding_dim)) for k in filter_sizes
])
self.fc = nn.Linear(num_filters * len(filter_sizes), num_classes)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.embedding(x)
x = self.pos_encoding(x)
x = x.permute(1, 0, 2)
x = self.transformer_encoder(x)
x = x.permute(1, 0, 2)
x = x.unsqueeze(1)
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs]
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x]
x = torch.cat(x, 1)
x = self.dropout(x)
logits = self.fc(x)
return logits
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=0.1)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
```
其中,`TransformerCNN` 类继承自 `nn.Module`,包含了一个嵌入层、一个位置编码层、两个 Transformer 编码层、多个卷积层、一个全连接层和一个 dropout 层。在 `forward` 方法中,首先将输入的文本序列进行嵌入和位置编码,然后输入到 Transformer 编码层中进行特征提取。接着,将 Transformer 编码层的输出进行卷积和池化操作,最后通过全连接层得到分类结果。
阅读全文