给出如下差分格式正确Matlab代码: iA*B(u(i,j,k+1)-u(i,j,k))/2 + B*(u(i+1,j,k+1)-2*u(i,j,k+1)+u(i-1,j,k+1)+u(i+1,j,k)-2*u(i,j,k)+u(i-1,j,k))/(2*hx^2) + A*(u(i,j+1,k+1)-2*u(i,j,k+1)+u(i,j-1,k+1)+u(i,j+1,k)-2*u(i,j,k)+u(i,j-1,k))/(2*hy^2) - AB(((3/2)*(|u(i,j,k)|^2+|u(i,j,k)|^4)-(1/2)*(|u(i,j,k-1)|^2+|u(i,j,k-1)|^4))*(1/2)*(u(i,j,k+1)+u(i,j,k))) = 0; 差分格式的边界条件为u(0,y,t)=u(m,y,t)=u(x,0,t)=u(x,n,t)=0, 初始条件u(x,y,0)=exp(-(x^2+y^2)/2)。 差分格式中的A、B分别为x,y 方向上的紧致差分格式算子, 满足A与u(i,j,k)作用得到:(1/12)*(u(i+1,j,k)+10*u(i,j,k)+u(i-1,j,k)) B与u(i,j,k)作用得到:(1/12)*(u(i,j+1,k)+10*u(i,j,k)+u(i,j-1,k)) AB算子与u(I,j,k)作用得到 (1/144)*(u(i+1,j+1,k)+10*u(i+1,j,k)+u(i+1,j-1,k)+10*u(i,j+1,k)+10*u(i,j,k) +10*u(i,j-1,k)+u(i-1,j+1,k)+u(i-1,j,k)+u(i-1,j-1,k)) 用牛顿迭代法求解上面的非线性方程组,画出数值解图形,输出误差值
时间: 2024-02-29 07:52:01 浏览: 98
以下是差分格式正确的Matlab代码:
```matlab
% 参数设置
m = 100; % x方向网格数
n = 100; % y方向网格数
T = 1; % 时间总长度
dt = 0.01; % 时间步长
hx = 1/m; % x方向步长
hy = 1/n; % y方向步长
% 初始条件
u = zeros(m+1,n+1,2);
for i = 1:m+1
for j = 1:n+1
u(i,j,1) = exp(-(hx*(i-1))^2/2-(hy*(j-1))^2/2);
end
end
% 差分格式中的A、B、AB算子
A = [1/12, 10/12, 1/12];
B = [1/12; 10/12; 1/12];
AB = [1/144, 10/144, 1/144; 10/144, 10/144, 10/144; 1/144, 10/144, 1/144];
% 牛顿迭代法求解非线性方程组
for k = 1:T/dt
% 利用前两个时间层的u值求解第三个时间层的u值
for i = 2:m
for j = 2:n
% 牛顿迭代法
u_temp = u(i,j,2);
f = @(x) i*A*B*(x-u(i,j,1))/2 + B*(u(i+1,j,2)-2*u(i,j,2)+u(i-1,j,2)+u(i+1,j,1)-2*u(i,j,1)+u(i-1,j,1))/(2*hx^2) + A*(u(i,j+1,2)-2*u(i,j,2)+u(i,j-1,2)+u(i,j+1,1)-2*u(i,j,1)+u(i,j-1,1))/(2*hy^2) - AB*(((3/2)*(abs(u(i,j,2))^2+abs(u(i,j,2))^4)-(1/2)*(abs(u(i,j,1))^2+abs(u(i,j,1))^4))*(1/2)*(u(i,j,2)+u(i,j,1));
f_derivative = @(x) i*A*B/2 + B/(2*hx^2) + A/(2*hy^2) - AB*(((9/2)*abs(u(i,j,2))^2+5*abs(u(i,j,2))^4-(3/2)*abs(u(i,j,1))^2-1/2*abs(u(i,j,1))^4)/4);
for it = 1:10 % 进行10次迭代
u_temp = u_temp - f(u_temp)/f_derivative(u_temp);
end
u(i,j,3) = u_temp;
end
end
% 边界条件
u(1,:,3) = 0;
u(m+1,:,3) = 0;
u(:,1,3) = 0;
u(:,n+1,3) = 0;
% 更新时间层
u(:,:,1) = u(:,:,2);
u(:,:,2) = u(:,:,3);
end
% 输出误差值
x = linspace(0,1,m+1);
y = linspace(0,1,n+1);
[X,Y] = meshgrid(x,y);
exact = exp(-(X.^2+Y.^2)/2);
error = max(max(abs(u(:,:,2)-exact)));
fprintf('误差值为:%f\n',error);
% 画图
figure;
surf(x,y,u(:,:,2));
title('数值解');
xlabel('x');
ylabel('y');
zlabel('u');
figure;
surf(x,y,exact);
title('精确解');
xlabel('x');
ylabel('y');
zlabel('u');
```
阅读全文