给出代码:增益变量为三辆车的速度和位置,利用强化学习方法优化控制增益变量实现三车编队系统
时间: 2024-03-03 08:52:03 浏览: 80
好的,为了实现三车编队系统,我们可以采用深度强化学习算法中的DDPG(Deep Deterministic Policy Gradient)算法,该算法可以用于连续动作控制问题,可以有效地学习到一个连续的动作策略。下面给出一个简单的实现代码,供参考:
```
import numpy as np
import tensorflow as tf
import gym
# 定义三车编队系统的状态空间和动作空间
STATE_DIM = 6
ACTION_DIM = 3
# 定义一个Actor网络模型
def build_actor_network(state_dim, action_dim):
input_layer = tf.keras.layers.Input(shape=(state_dim,))
hidden_layer_1 = tf.keras.layers.Dense(64, activation='relu')(input_layer)
hidden_layer_2 = tf.keras.layers.Dense(32, activation='relu')(hidden_layer_1)
output_layer = tf.keras.layers.Dense(action_dim, activation='tanh')(hidden_layer_2)
model = tf.keras.models.Model(inputs=input_layer, outputs=output_layer)
return model
# 定义一个Critic网络模型
def build_critic_network(state_dim, action_dim):
input_state_layer = tf.keras.layers.Input(shape=(state_dim,))
input_action_layer = tf.keras.layers.Input(shape=(action_dim,))
hidden_layer_1 = tf.keras.layers.concatenate([input_state_layer, input_action_layer])
hidden_layer_2 = tf.keras.layers.Dense(64, activation='relu')(hidden_layer_1)
hidden_layer_3 = tf.keras.layers.Dense(32, activation='relu')(hidden_layer_2)
output_layer = tf.keras.layers.Dense(1, activation='linear')(hidden_layer_3)
model = tf.keras.models.Model(inputs=[input_state_layer, input_action_layer], outputs=output_layer)
return model
# 定义一个DDPG算法类
class DDPGAgent(object):
def __init__(self, state_dim, action_dim, actor_lr=0.001, critic_lr=0.01, discount_factor=0.99, tau=0.01):
# 初始化Actor和Critic网络及其目标网络
self.actor_network = build_actor_network(state_dim, action_dim)
self.critic_network = build_critic_network(state_dim, action_dim)
self.target_actor_network = build_actor_network(state_dim, action_dim)
self.target_critic_network = build_critic_network(state_dim, action_dim)
# 将目标网络的权重初始化为与原网络相同
self.target_actor_network.set_weights(self.actor_network.get_weights())
self.target_critic_network.set_weights(self.critic_network.get_weights())
# 定义优化器
self.actor_optimizer = tf.keras.optimizers.Adam(lr=actor_lr)
self.critic_optimizer = tf.keras.optimizers.Adam(lr=critic_lr)
# 定义其他参数
self.discount_factor = discount_factor
self.tau = tau
# 定义选择动作的方法
def choose_action(self, state):
action = self.actor_network.predict(np.array([state]))[0]
return action
# 定义更新网络参数的方法
def train(self, states, actions, rewards, next_states, done):
# 更新Critic网络
with tf.GradientTape() as tape:
target_actions = self.target_actor_network.predict(next_states)
target_q_values = self.target_critic_network.predict([next_states, target_actions])
q_targets = rewards + self.discount_factor * target_q_values * (1 - done)
q_values = self.critic_network([states, actions])
critic_loss = tf.keras.losses.mean_squared_error(q_targets, q_values)
critic_grads = tape.gradient(critic_loss, self.critic_network.trainable_variables)
self.critic_optimizer.apply_gradients(zip(critic_grads, self.critic_network.trainable_variables))
# 更新Actor网络
with tf.GradientTape() as tape:
actions_pred = self.actor_network(states)
actor_loss = -tf.reduce_mean(self.critic_network([states, actions_pred]))
actor_grads = tape.gradient(actor_loss, self.actor_network.trainable_variables)
self.actor_optimizer.apply_gradients(zip(actor_grads, self.actor_network.trainable_variables))
# 更新目标网络
for target_weights, weights in zip(self.target_actor_network.weights, self.actor_network.weights):
target_weights.assign(self.tau * weights + (1 - self.tau) * target_weights)
for target_weights, weights in zip(self.target_critic_network.weights, self.critic_network.weights):
target_weights.assign(self.tau * weights + (1 - self.tau) * target_weights)
# 定义保存模型的方法
def save_model(self, actor_path, critic_path):
self.actor_network.save_weights(actor_path)
self.critic_network.save_weights(critic_path)
# 定义一个环境类,用于模拟三车编队系统
class ThreeCarFormationEnv(gym.Env):
def __init__(self):
self.state_dim = STATE_DIM
self.action_dim = ACTION_DIM
self.action_space = gym.spaces.Box(low=-1, high=1, shape=(self.action_dim,), dtype=np.float32)
self.observation_space = gym.spaces.Box(low=-np.inf, high=np.inf, shape=(self.state_dim,), dtype=np.float32)
def reset(self):
# 初始化三辆车的位置和速度
self.car1_pos = 0
self.car1_vel = 0
self.car2_pos = 10
self.car2_vel = 0
self.car3_pos = 20
self.car3_vel = 0
return np.array([self.car1_pos, self.car1_vel, self.car2_pos, self.car2_vel, self.car3_pos, self.car3_vel])
def step(self, action):
# 计算三辆车的加速度
acc1 = action[0]
acc2 = action[1]
acc3 = action[2]
# 更新三辆车的位置和速度
self.car1_vel += acc1
self.car1_pos += self.car1_vel
self.car2_vel += acc2
self.car2_pos += self.car2_vel
self.car3_vel += acc3
self.car3_pos += self.car3_vel
# 计算奖励和是否结束
reward = -np.abs(self.car2_pos - self.car1_pos - 10) - np.abs(self.car3_pos - self.car2_pos - 10)
done = False
# 判断是否到达终点
if self.car1_pos >= 100 and self.car2_pos >= 100 and self.car3_pos >= 100:
done = True
return np.array([self.car1_pos, self.car1_vel, self.car2_pos, self.car2_vel, self.car3_pos, self.car3_vel]), reward, done, {}
# 定义主函数
if __name__ == '__main__':
# 创建环境
env = ThreeCarFormationEnv()
# 创建DDPG算法对象
agent = DDPGAgent(state_dim=STATE_DIM, action_dim=ACTION_DIM)
# 开始训练
for i in range(1000):
state = env.reset()
episode_reward = 0
done = False
while not done:
# 选择动作
action = agent.choose_action(state)
# 执行动作并观察结果
next_state, reward, done, _ = env.step(action)
episode_reward += reward
# 更新网络
agent.train(state.reshape(1, -1), action.reshape(1, -1), reward, next_state.reshape(1, -1), done)
# 更新状态
state = next_state
# 输出本轮训练结果
print('Episode:', i, 'Reward:', episode_reward)
# 保存模型
agent.save_model('actor.h5', 'critic.h5')
```
以上代码仅供参考,实际应用中需要根据具体问题进行修改和优化。
阅读全文