利用强化学习方法优化控制增益变量(三辆车的速度和位置)实现三辆车编队系统,给出仿真代码
时间: 2024-03-03 19:51:42 浏览: 138
好的,我可以为你提供一个简单的三辆车编队系统的强化学习仿真代码。代码基于Python和Gym强化学习环境库。在代码中,我们使用了深度Q网络(DQN)算法来优化控制增益变量。
```python
import gym
import numpy as np
import tensorflow as tf
from collections import deque
# 定义DQN算法类
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95
self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(24, input_dim=self.state_size, activation='relu'))
model.add(tf.keras.layers.Dense(24, activation='relu'))
model.add(tf.keras.layers.Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.randint(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
minibatch = np.array(random.sample(self.memory, batch_size))
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma *
np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# 定义环境类
class ThreeCarsEnv(gym.Env):
def __init__(self):
self.observation_space = gym.spaces.Box(low=-10, high=10, shape=(6,))
self.action_space = gym.spaces.Discrete(3)
self.cars = np.array([[0, 0], [0, 2], [0, 4]])
self.velocities = np.array([[0, 0], [0, 0], [0, 0]])
self.reward_range = (-np.inf, np.inf)
def step(self, action):
action = action - 1
self.velocities[:, 1] += action
self.cars += self.velocities
self.cars[self.cars < 0] = 0
self.cars[self.cars > 10] = 10
state = np.concatenate([self.cars.flatten(), self.velocities.flatten()])
reward = -np.abs(self.cars[1, 0] - self.cars[0, 0]) - np.abs(self.cars[2, 0] - self.cars[1, 0])
done = False
if np.sum(np.abs(self.cars[1:, 0] - self.cars[:-1, 0])) < 0.1:
done = True
return state, reward, done, {}
def reset(self):
self.cars = np.array([[0, 0], [0, 2], [0, 4]])
self.velocities = np.array([[0, 0], [0, 0], [0, 0]])
state = np.concatenate([self.cars.flatten(), self.velocities.flatten()])
return state
# 实例化环境和代理
env = ThreeCarsEnv()
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DQNAgent(state_size, action_size)
# 训练
batch_size = 32
num_episodes = 1000
for e in range(num_episodes):
state = env.reset()
state = np.reshape(state, [1, state_size])
done = False
while not done:
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if len(agent.memory) > batch_size:
agent.replay(batch_size)
```
在代码中,我们定义了一个DQNAgent类和一个ThreeCarsEnv环境类。DQNAgent类实现了DQN算法,并使用Keras构建深度神经网络模型。ThreeCarsEnv类定义了三辆车的状态、动作和奖励,以及在环境中运行的步骤。
在主程序中,我们实例化了环境和代理,并使用训练循环来训练代理。在每个训练周期内,代理根据当前状态选择一个动作,将新的状态、奖励和完成标志传递给代理进行记忆,并更新其神经网络模型。
阅读全文