利用强化学习方法优化控制增益变量实现三辆车编队系统,给出仿真代码
时间: 2024-03-03 13:51:37 浏览: 56
论文研究-基于专家系统的迭代学习控制设计 .pdf
好的,你的问题是关于利用强化学习方法优化控制增益变量实现三辆车编队系统的仿真代码的。以下是一个简单的示例代码,供你参考:
```python
import numpy as np
import tensorflow as tf
import gym
# 定义车辆编队系统的状态空间、动作空间和奖励函数
state_space = 6 # 车辆位置和速度信息
action_space = 4 # 控制增益变量
reward_goal = 1.0 # 目标奖励
reward_collision = -1.0 # 碰撞惩罚
reward_step = -0.1 # 步数惩罚
# 定义深度Q网络模型
class DQNModel(tf.keras.Model):
def __init__(self, state_space, action_space):
super().__init__()
self.hidden1 = tf.keras.layers.Dense(32, activation='relu')
self.hidden2 = tf.keras.layers.Dense(32, activation='relu')
self.output_layer = tf.keras.layers.Dense(action_space, activation='linear')
def call(self, inputs):
x = self.hidden1(inputs)
x = self.hidden2(x)
x = self.output_layer(x)
return x
# 定义深度Q网络训练过程
class DQNTraining:
def __init__(self, state_space, action_space):
self.state_space = state_space
self.action_space = action_space
self.model = DQNModel(state_space, action_space)
self.target_model = DQNModel(state_space, action_space)
self.target_model.set_weights(self.model.get_weights())
self.optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
self.gamma = 0.99
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.batch_size = 32
def get_action(self, state):
if np.random.rand() <= self.epsilon:
return np.random.randint(self.action_space)
else:
q_values = self.model.predict(state)
return np.argmax(q_values[0])
def train(self, env, episodes):
for episode in range(episodes):
state = env.reset()
state = np.reshape(state, [1, self.state_space])
done = False
total_reward = 0
while not done:
action = self.get_action(state)
next_state, reward, done, _ = env.step(action)
next_state = np.reshape(next_state, [1, self.state_space])
total_reward += reward
target = self.target_model.predict(next_state)
if done:
target[0][action] = reward
else:
Q_future = max(target[0])
target[0][action] = reward + Q_future * self.gamma
self.model.fit(state, target, epochs=1, verbose=0)
state = next_state
if done:
break
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
print(f"Episode {episode + 1}: Total reward = {total_reward}")
if episode % 10 == 0:
self.target_model.set_weights(self.model.get_weights())
# 定义车辆编队系统仿真环境
class CarFormationEnv(gym.Env):
def __init__(self):
self.state_space = state_space
self.action_space = action_space
self.reward_range = (reward_collision, reward_goal)
self.num_cars = 3
self.time_step = 0.1
self.max_steps = 100
self.goal_position = [50, 0, 0]
self.collision_distance = 2.0
self.k_range = [0.0, 1.0]
self.positions = np.zeros((self.num_cars, 2))
self.velocities = np.zeros((self.num_cars, 2))
self.accelerations = np.zeros((self.num_cars, 2))
self.k = np.zeros((self.num_cars - 1, 2))
self.viewer = None
def reset(self):
self.positions = np.zeros((self.num_cars, 2))
self.velocities = np.zeros((self.num_cars, 2))
self.accelerations = np.zeros((self.num_cars, 2))
self.k = np.zeros((self.num_cars - 1, 2))
self.positions[0] = [-10, 0]
self.positions[1] = [0, 0]
self.positions[2] = [10, 0]
return self.get_state()
def step(self, action):
k = self.get_k(action)
self.k[action // 2] = k
self.accelerations[0] = [0, 0]
self.accelerations[1] = k[0] * (self.positions[0] - self.positions[1]) + k[1] * (self.velocities[0] - self.velocities[1])
self.accelerations[2] = k[0] * (self.positions[1] - self.positions[2]) + k[1] * (self.velocities[1] - self.velocities[2])
self.velocities += self.accelerations * self.time_step
self.positions += self.velocities * self.time_step
done = self.check_done()
reward = self.get_reward(done)
return self.get_state(), reward, done, {}
def get_state(self):
return np.concatenate((self.positions.flatten(), self.velocities.flatten()))
def get_k(self, action):
k_range = self.k_range
k1_min, k1_max = k_range
k2_min, k2_max = k_range
k1_range = k1_max - k1_min
k2_range = k2_max - k2_min
k1 = k1_min + k1_range * ((action % 2) / (action_space // 2 - 1))
k2 = k2_min + k2_range * ((action // 2) / (action_space // 2 - 1))
return [k1, k2]
def check_done(self):
for i in range(self.num_cars):
if np.linalg.norm(self.positions[i] - self.goal_position) > 1.0:
return False
for i in range(self.num_cars):
for j in range(i + 1, self.num_cars):
if np.linalg.norm(self.positions[i] - self.positions[j]) < self.collision_distance:
return True
return False
def get_reward(self, done):
if done:
return reward_collision
elif np.linalg.norm(self.positions[-1] - self.goal_position) < 1.0:
return reward_goal
else:
return reward_step
def render(self, mode='human'):
from gym.envs.classic_control import rendering
if self.viewer is None:
self.viewer = rendering.Viewer(600, 400)
xs = [-50, 50, -50, 50, -50, 50]
ys = [0, 0, 10, 10, -10, -10]
self.viewer.draw_polyline(list(zip(xs, ys)))
for i in range(self.num_cars):
car = rendering.make_circle(1.0)
car.set_color(1, 0, 0)
transform = rendering.Transform()
transform.set_translation(self.positions[i][0], self.positions[i][1])
car.add_attr(transform)
self.viewer.add_onetime(car)
return self.viewer.render(return_rgb_array=mode == 'rgb_array')
# 定义训练过程
training = DQNTraining(state_space, action_space)
env = CarFormationEnv()
training.train(env, episodes=100)
```
在上面的代码中,我们使用了深度Q网络来实现车辆编队系统的控制,并通过强化学习算法来优化控制增益变量。具体来说,我们首先定义了车辆编队系统的状态空间、动作空间和奖励函数,并定义了一个深度Q网络模型和深度Q网络训练过程。然后,我们定义了一个车辆编队系统的仿真环境,包括车辆位置、速度、加速度等信息,并定义了相应的控制程序。最后,我们通过训练过程来优化控制增益变量,并输出训练结果。
需要注意的是,以上代码仅仅是一个简单的示例,实际应用中还需要根据具体情况进行调整和优化。如果你需要更详细的帮助,可以提供更具体的问题和要求,我会尽力帮助你。
阅读全文