多分类auc画图python代码
时间: 2023-12-05 15:41:16 浏览: 115
多分类代码
根据提供的引用内容,没有给出多分类AUC画图的具体实现方法。但是,我们可以根据多分类AUC的定义和常见的实现方法,给出一个Python实现的范例供参考。
多分类AUC的定义:对于多分类问题,我们可以将其转化为多个二分类问题,然后分别计算每个二分类问题的AUC值,最后将这些AUC值进行加权平均得到多分类AUC值。
下面是一个基于sklearn库的多分类AUC画图Python代码范例:
```python
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
import numpy as np
# y_true为真实标签,y_score为预测得分
fpr = dict()
tpr = dict()
roc_auc = dict()
n_classes = y_true.shape[1] # n_classes为类别数
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_true[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# 计算加权平均AUC
weights = np.ones(n_classes) / n_classes
w_auc = np.average(list(roc_auc.values()), weights=list(weights))
# 绘制ROC曲线
plt.figure()
lw = 2
colors = ['blue', 'red', 'green', 'orange', 'purple'] # 颜色列表
for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC curve of class {0} (AUC = {1:0.2f})'
''.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC curve')
plt.legend(loc="lower right")
plt.show()
```
阅读全文