tsp问题 dp状态压缩

时间: 2023-10-11 16:06:05 浏览: 304
TSP(Traveling Salesman Problem)问题是一个经典的组合优化问题,旅行商问题。它的目标是找到一条最短路径,使得一个旅行商可以经过每个城市一次,并返回起始城市。在解决TSP问题时,动态规划结合状态压缩技巧是一种常用的方法。 状态压缩是指将原问题中可能的状态进行压缩,减少状态空间的大小。在TSP问题中,可以使用动态规划的思想来解决。首先,定义一个二维数组dp,其中dp[S][i]表示当前已经访问过的城市集合为S,最后一个访问的城市为i时的最短路径长度。 状态转移方程为: dp[S][i] = min(dp[S - {i}][j] + dist[j][i]),其中j∈S且j≠i 上述方程表示,对于当前访问的城市i和已经访问过的城市集合S,在已知dp[S - {i}][j]的情况下,求出dp[S][i]。其中dist[j][i]表示城市j到城市i的距离。 为了减少状态空间的大小,可以使用状态压缩技巧。可以用一个二进制数来表示城市集合S,其中第i位为1表示已经访问过城市i,为0表示未访问过城市i。这样,状态压缩后的dp数组的大小为2^n * n,其中n表示城市的数量。 通过动态规划和状态压缩,可以有效地解决TSP问题,并找到最短路径。
相关问题

给出一个求解TSP问题的精确解法代码

求解 TSP 问题的一种精确解法是使用状态压缩动态规划。 以下是一个 Python 代码示例: ``` import math def tsp(n, dist, dp): for mask in range(1, 1<<n): for i in range(n): if mask & (1<<i) != 0: if mask == (1<<i): dp[mask][i] = 0 else: dp[mask][i] = math.inf for j in range(n): if mask & (1<<j) != 0 and i != j: dp[mask][i] = min(dp[mask][i], dist[i][j] + dp[mask ^ (1<<i)][j]) ans = math.inf for i in range(n): ans = min(ans, dp[(1<<n)-1][i]) return ans # Example usage: n = 4 dist = [[0, 10, 15, 20], [10, 0, 35, 25], [15, 35, 0, 30], [20, 25, 30, 0]] dp = [[math.inf for j in range(n)] for i in range(1<<n)] print(tsp(n, dist, dp)) ``` 这段代码实现了一种使用状态压缩动态规划的 TSP 求解方法,其中 dist 是邻接矩阵,dp 是状态转移数组。 请注意: - 这只是一种精确求解 TSP 问题的算法,并不能适用于所有情况,例如点数过多的 TSP 问题时间复杂度会很大。 - 这仅是一种示例代码, 需要在实际应用中进行严格测试。

写一段C代码:基于TSP方法的碎纸片复原问题

好的,以下是基于TSP方法的碎纸片复原问题的C代码: ``` #include <stdio.h> #include <math.h> #define MAX_N 21 #define INF 100000000 int N; // 碎纸片数量 int W[MAX_N][MAX_N]; // 两个碎纸片之间的距离 double dp[1 << MAX_N][MAX_N]; // dp表 double tsp(int S, int v) { if (dp[S][v] >= 0) return dp[S][v]; // 若已经计算过,则直接返回结果 if (S == (1 << N) - 1 && v == 0) { // 所有碎片恰好拼接完毕,返回0 return dp[S][v] = 0; } double res = INF; for (int u = 0; u < N; u++) { // 遍历所有尚未拼接的碎片 if (!(S >> u & 1)) { // 若u尚未拼接 res = fmin(res, tsp(S | 1 << u, u) + W[v][u]); // 更新res } } return dp[S][v] = res; } int main() { scanf("%d", &N); int x[N], y[N]; for (int i = 0; i < N; i++) { scanf("%d%d", &x[i], &y[i]); } for (int i = 0; i < N; i++) { // 计算两个碎纸片之间的距离 for (int j = 0; j < N; j++) { W[i][j] = W[j][i] = sqrt(pow(x[i] - x[j], 2) + pow(y[i] - y[j], 2)); } } for (int i = 0; i < (1 << MAX_N); i++) { // 初始化dp表 for (int j = 0; j < MAX_N; j++) { dp[i][j] = -1.0; } } printf("%.2lf\n", tsp(0, 0)); // 输出最小代价 return 0; } ``` 注:该代码采用了动态规划的思想,通过递归计算最小代价。其中,采用了状态压缩的方法,即使用二进制数表示各碎纸片的选中情况。在计算 dp[S][v] 时,S 表示已经选中的碎片集合,v 表示当前位置。具体细节可参考注释。
阅读全文

相关推荐

最新推荐

recommend-type

jsp物流信息网建设(源代码+论文)(2024vl).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

中小学教师教育教学情况调查表(学生家长用).docx

中小学教师教育教学情况调查表(学生家长用)
recommend-type

航空车辆检测8-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar

航空车辆检测8-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rarTepegozz-V2 2024-04-21 12:16 pm ============================= *与您的团队在计算机视觉项目上合作 *收集和组织图像 *了解和搜索非结构化图像数据 *注释,创建数据集 *导出,训练和部署计算机视觉模型 *使用主动学习随着时间的推移改善数据集 对于最先进的计算机视觉培训笔记本,您可以与此数据集一起使用 该数据集包含4794张图像。 Tepegozz以可可格式注释。 将以下预处理应用于每个图像: *像素数据的自动取向(带有Exif-Arientation剥离) *调整大小为640x640(拉伸) 应用以下扩展来创建每个源图像的3个版本: *水平翻转的50%概率 *垂直翻转的50%概率 *随机裁剪图像的0%至20% * -15和+15度之间的随机旋转 * 0到1.7像素之间的随机高斯模糊 *将盐和胡椒噪声应用于0.1%的像素 以下转换应用于每个图像的边界框: *以下90度旋转之一的同等概
recommend-type

LabVIEW实现NB-IoT通信【LabVIEW物联网实战】

资源说明:https://blog.csdn.net/m0_38106923/article/details/144637354 一分价钱一分货,项目代码可顺利编译运行~
recommend-type

jsp网上购书系统设计(源代码+论文)(202490).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"