DCC-MVGARCH
时间: 2023-10-04 22:12:47 浏览: 81
mgarch:DCC-GARCH(1,1)用于多元正态分布
DCC-MVGARCH是一种多元动态条件相关(Dynamic Conditional Correlation)模型,用于进行多变量波动率预测。该模型结合了条件方差模型(MVGARCH)和动态相关模型(DCC),旨在对不同资产之间的波动率和相关性进行建模和预测。在DCC-MVGARCH模型中,使用样本相关矩阵来构建恒定条件相关(CCC)的协方差矩阵,而使用基于移动窗口估计的相关矩阵来构建动态条件相关(DCC)的协方差矩阵。DCC-MVGARCH模型的预测结果对于跨资产投资组合的构建具有重要影响,因为它能够捕捉到不同资产之间的波动率和相关性的变化。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [R语言多元动态条件相关DCC-MVGARCH、常相关CCC-MVGARCH模型进行多变量股市波动率预测](https://blog.csdn.net/qq_19600291/article/details/119387245)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [R语言多元动态条件相关DCC-MVGARCH、常相关CCC-MVGARCH模型进行多变量波动率预测...](https://blog.csdn.net/tecdat/article/details/129388400)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文