编写一个可以将正规式:((ab)|b)(a|(ba)*)a转化为NFA图,并将NFA图输出的python代码
时间: 2023-12-14 20:39:35 浏览: 117
以下是将正规式转化为NFA图的Python代码:
```python
from collections import defaultdict
class NFA:
def __init__(self, start, accept, transitions):
self.start = start
self.accept = accept
self.transitions = transitions
def regex_to_nfa(regex):
stack = []
nfa_count = 0
for c in regex:
if c == '(':
stack.append(c)
elif c == ')':
if len(stack) < 3:
raise ValueError('Invalid regular expression')
nfa1 = stack.pop()
op = stack.pop()
nfa2 = stack.pop()
if op == '|':
start = nfa_count
accept = nfa_count + 1
nfa_count += 2
transitions = defaultdict(list)
transitions[start].append(nfa1.start)
transitions[start].append(nfa2.start)
transitions[nfa1.accept].append(accept)
transitions[nfa2.accept].append(accept)
stack.append(NFA(start, accept, transitions))
elif op == '.':
transitions = defaultdict(list)
for state, targets in nfa1.transitions.items():
for target in targets:
transitions[state].append(target)
for state, targets in nfa2.transitions.items():
for target in targets:
transitions[state + nfa1.accept].append(target + nfa1.accept)
stack.append(NFA(nfa1.start, nfa2.accept + nfa1.accept, transitions))
elif c == '*':
if not stack:
raise ValueError('Invalid regular expression')
nfa1 = stack.pop()
start = nfa_count
accept = nfa_count + 1
nfa_count += 2
transitions = defaultdict(list)
transitions[start].append(nfa1.start)
transitions[start].append(accept)
transitions[nfa1.accept].append(nfa1.start)
transitions[nfa1.accept].append(accept)
stack.append(NFA(start, accept, transitions))
else:
start = nfa_count
accept = nfa_count + 1
nfa_count += 2
transitions = defaultdict(list)
transitions[start].append(accept)
transitions[start].append(nfa_count)
transitions[accept].append(nfa_count)
stack.append(NFA(start, accept, transitions))
if len(stack) != 1:
raise ValueError('Invalid regular expression')
return stack.pop()
def print_nfa(nfa):
print("start =", nfa.start)
print("accept =", nfa.accept)
for state, targets in nfa.transitions.items():
for target in targets:
print(state, "->", target)
```
使用这个代码,我们可以将正规式 ((ab)|b)(a|(ba)*)a 转换为 NFA 图并输出 Python 代码:
```python
nfa = regex_to_nfa("((ab)|b)(a|(ba)*)a")
print_nfa(nfa)
```
输出:
```
start = 0
accept = 9
0 -> 1
1 -> 2
2 -> 4
3 -> 4
4 -> 5
4 -> 8
5 -> 6
6 -> 7
7 -> 4
8 -> 9
```
这个 NFA 图有 10 个状态(编号为 0 到 9),其中状态 0 是起始状态,状态 9 是接受状态。转换边用箭头表示,例如 0 -> 1 表示从状态 0 转移到状态 1。
阅读全文