基于粗糙集的属性约简代码实现python
时间: 2023-10-29 21:04:47 浏览: 158
粗糙集的属性约简是一种常见的特征选择方法,主要用于降低特征维度,提高模型的准确性和泛化能力。下面是一个基于Python的粗糙集属性约简的代码实现:
```python
import pandas as pd
from itertools import combinations
def pos_region(df, attrs, d_attr):
"""
计算决策属性d_attr的正域
"""
pos = df[df[d_attr]==df[d_attr].mode()[0]]
for attr in attrs:
if attr != d_attr:
pos = pos[pos[attr]==pos[attr].mode()[0]]
return pos
def core(df, attrs, d_attr):
"""
计算决策属性d_attr的核
"""
pos = pos_region(df, attrs, d_attr)
core = []
for index, row in pos.iterrows():
row_attrs = row[attrs]
is_core = True
for index2, row2 in pos.iterrows():
if index != index2:
row_attrs2 = row2[attrs]
if all(row_attrs != row_attrs2):
is_core = False
break
if is_core:
core.append(index)
return core
def attr_reduction(df, attrs, d_attr):
"""
计算属性约简
"""
core_set = core(df, attrs, d_attr)
if len(core_set) == len(df):
return attrs
else:
attr_combinations = []
for i in range(1, len(attrs)+1):
for combination in combinations(attrs, i):
if set(combination) not in attr_combinations:
attr_combinations.append(set(combination))
min_length = len(attrs)
min_red = None
for combination in attr_combinations:
comb_list = list(combination)
pos = pos_region(df, comb_list, d_attr)
if all(elem in core_set for elem in pos.index):
if len(comb_list) < min_length:
min_length = len(comb_list)
min_red = comb_list
return min_red
```
代码中,`pos_region`函数用于计算决策属性的正域,`core`函数用于计算决策属性的核,`attr_reduction`函数用于计算属性约简。其中,`df`是包含数据的DataFrame,`attrs`是属性列表,`d_attr`是决策属性。
要使用此代码,可以按照以下步骤操作:
1. 准备数据集,例如使用pandas读取csv文件:
```python
df = pd.read_csv('data.csv')
```
2. 选择属性和决策属性:
```python
attrs = ['attr1', 'attr2', 'attr3']
d_attr = 'decision'
```
3. 计算属性约简:
```python
reduced_attrs = attr_reduction(df, attrs, d_attr)
print(reduced_attrs)
```
输出结果为属性约简后的属性列表。
阅读全文