INFO Client:54 - client token: N/A diagnostics: Application application_1686359558924_0001 failed 2 times due to AM Container for appattempt_1686359558924_0001_000002 exited with exitCode: 13 For more detailed output, check application tracking page:http://spark01:8088/cluster/app/application_1686359558924_0001Then, click on links to logs of each attempt. Diagnostics: Exception from container-launch. Container id: container_e01_1686359558924_0001_02_000001 Exit code: 13 Stack trace: ExitCodeException exitCode=13: at org.apache.hadoop.util.Shell.runCommand(Shell.java:585) at org.apache.hadoop.util.Shell.run(Shell.java:482) at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:776) at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:212) at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302) at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Container exited with a non-zero exit code 13 Failing this attempt. Failing the application. ApplicationMaster host: N/A ApplicationMaster RPC port: -1 queue: default start time: 1686359786278 final status: FAILED tracking URL: http://spark01:8088/cluster/app/application_1686359558924_0001 user: root Exception in thread "main" org.apache.spark.SparkException: Application application_1686359558924_0001 finished with failed status at org.apache.spark.deploy.yarn.Client.run(Client.scala:1165) at org.apache.spark.deploy.yarn.YarnClusterApplication.start(Client.scala:1520) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:894) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:198) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:228) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:137) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) 2023-06-10 09:20:01 INFO ShutdownHookManager:54 - Shutdown hook called 2023-06-10 09:20:01 INFO ShutdownHookManager:54 - Deleting directory /tmp/spark-7a611aba-e3f1-4ee9-9829-f1bc45c9348d 2023-06-10 09:20:01 INFO ShutdownHookManager:54 - Deleting directory /tmp/spark-b69c8ca8-924f-430e-9a7c-625efd9e9f47

时间: 2023-11-15 19:05:10 浏览: 66
这个错误信息是关于Spark应用程序在YARN上启动时出现的问题。它表明应用程序的某个尝试失败了,退出代码为13,导致应用程序最终失败。具体原因需要进一步分析应用程序代码和YARN日志信息。可能的原因包括资源不足、权限问题、环境配置问题等。您可以尝试查看应用程序跟踪页面和每个尝试的日志来获得更多详细信息。
相关问题

fatal: Authentication failed for 'https://github.com/ReffoZhiJian/CloudSCAUYoghurt_ZYLZYBZJC/'

这个错误是由于GitHub在2021年8月13日移除了对密码身份验证的支持所导致的。现在推荐使用个人访问令牌(Personal Access Token)进行身份验证。你可以在GitHub的文档中找到关于使用HTTPS URL进行克隆的更多信息,链接为https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories#cloning-with-https-urls。在克隆时,你需要使用个人访问令牌来进行身份验证,而不是密码。你可以在https://github.blog/2020-12-15-token-authentication-requirements-for-git-operations/找到更多关于令牌身份验证的信息。所以,你需要生成一个个人访问令牌,并将其用作身份验证凭据来解决这个问题。 #### 引用[.reference_title] - *1* [fatal: Authentication failed for ‘https://github.com](https://blog.csdn.net/u010751974/article/details/126542823)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [fatal: Authentication failed for ‘https://github.com/xxx.git/‘](https://blog.csdn.net/Blog_Sun/article/details/120038526)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [解决报错:fatal: Authentication failed for ‘https://github.com/*/*.git/‘](https://blog.csdn.net/liuzehn/article/details/128037853)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

client token: N/A

"client token: N/A"是指客户端令牌未提供或不可用。客户端令牌是一种用于身份验证和授权的凭据,通常用于访问某些服务或资源。 如果你看到 "client token: N/A" 的错误消息,可能有以下几种情况: 1. 未提供客户端令牌:在使用某些服务或资源时,需要提供有效的客户端令牌。如果你没有提供客户端令牌,或者忘记了提供它,系统可能会返回 "N/A" 作为占位符。 2. 客户端令牌无效:如果你提供了客户端令牌,但它被认为是无效的或不可用的,系统可能会返回 "N/A"。这可能是由于客户端令牌已过期、被撤销、或者与服务端的验证不匹配等原因。 要解决这个问题,你可以尝试以下步骤: 1. 检查文档或相关资源:查阅服务或API的文档,以确定是否需要提供客户端令牌,并了解正确的使用方式。 2. 检查令牌是否有效:确保你提供的客户端令牌是有效的,并与服务端进行正确的验证。 3. 重新生成令牌:如果你的客户端令牌已过期或被撤销,你可能需要联系服务提供商重新生成一个有效的令牌。 4. 寻求帮助:如果以上步骤无法解决问题,你可以联系服务提供商或相关的开发社区,以获取更多的支持和指导。 请注意,由于我不知道你具体使用的服务或资源,以上只是一些常见的解决方法。具体的解决方案可能因情况而异。

相关推荐

ERROR sqoop.Sqoop: Got exception running Sqoop: java.lang.NullPointerException java.lang.NullPointerException at org.json.JSONObject.<init>(JSONObject.java:144) at org.apache.sqoop.util.SqoopJsonUtil.getJsonStringforMap(SqoopJsonUtil.java:43) at org.apache.sqoop.SqoopOptions.writeProperties(SqoopOptions.java:867) at org.apache.sqoop.mapreduce.JobBase.putSqoopOptionsToConfiguration(JobBase.java:393) at org.apache.sqoop.mapreduce.JobBase.createJob(JobBase.java:379) at org.apache.sqoop.mapreduce.ImportJobBase.runImport(ImportJobBase.java:255) at org.apache.sqoop.manager.SqlManager.importQuery(SqlManager.java:747) at org.apache.sqoop.tool.ImportTool.importTable(ImportTool.java:536) at org.apache.sqoop.tool.ImportTool.run(ImportTool.java:633) at org.apache.sqoop.Sqoop.run(Sqoop.java:146) at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:76) at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:182) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:233) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:242) at org.apache.sqoop.Sqoop.main(Sqoop.java:251) Log Type: stdout Log Upload Time: Mon Jul 24 10:47:38 +0800 2023 Log Length: 74530 Showing 4096 bytes of 74530 total. Click here for the full log. 35517561_3806_01_000001: PRELAUNCH_OUT=/yarn/container-logs/application_1683335517561_3806/container_1683335517561_3806_01_000001/prelaunch.out: NM_AUX_SERVICE_mapreduce_shuffle=AAA0+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=: NM_PORT=8041: HADOOP_YARN_HOME=/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/hadoop-yarn: USER=admin: CLASSPATH=/yarn/nm/usercache/admin/appcache/application_1683335517561_3806/container_1683335517561_3806_01_000001:/yarn/nm/usercache/admin/appcache/application_1683335517561_3806/container_1683335517561_3806_01_000001/*:/etc/hadoop/conf.cloudera.yarn:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/hadoop/*:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/hadoop/lib/*:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/hadoop-hdfs/*:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/hadoop-hdfs/lib/*:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/hadoop-yarn/*:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/hadoop-yarn/lib/*:: PRELAUNCH_ERR=/yarn/container-logs/application_1683335517561_3806/container_1683335517561_3806_01_000001/prelaunch.err: HADOOP_TOKEN_FILE_LOCATION=/yarn/nm/usercache/admin/appcache/application_1683335517561_3806/container_1683335517561_3806_01_000001/container_tokens: LOCAL_USER_DIRS=/yarn/nm/usercache/admin/: OOZIE_ACTION_CONF_XML=/yarn/nm/usercache/admin/appcache/application_1683335517561_3806/container_1683335517561_3806_01_000001/action.xml: SHLVL=2: HOME=/home/: CONTAINER_ID=container_1683335517561_3806_01_000001: MALLOC_ARENA_MAX=4:怎么回事

最新推荐

如何基于python对接钉钉并获取access_token

主要介绍了如何基于python对接钉钉并获取access_token,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

C#管道发送和接收图片

VS2022版本运行 Server端:先运行,可以打开资源管理器选择图片文件,在进行发送 Client端:后运行,运行后Server再执行发送操作,在线程中接收数据,显示在界面,并保存到硬盘。

MIL_STD_1364J.537.pdf

MIL_STD_1364J.537.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

hbase中时间戳的精确度和hbase中列族和列名的分隔符是什么

我已经回答了关于HBase中时间戳的精确度的问题,现在回答你的第二个问题: 在HBase中,列族和列名的分隔符是冒号(:)。例如,如果你有一个列族为“info”,列名为“name”的列,那么在HBase中的完整列名将是“info:name”。这个分隔符是在HBase的设计中被硬编码的,不能更改。这个分隔符在HBase的API中也得到了体现,例如在Java API中,可以使用“:`”来将列族和列名分隔开来,如下所示: ```java Get get = new Get(Bytes.toBytes("rowkey")); get.addColumn(Bytes.toBytes("info"),

spring boot应用启动原理分析.docx

spring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索

使用 Flask Web 框架来构建 Web 服务,提供 API 接口。

使用 Flask Web 框架来构建 Web 服务,提供 API 接口的步骤如下: 1. 安装 Flask 框架,可以使用 pip 工具进行安装:`pip install flask`。 2. 创建一个 Flask 应用,代码如下: ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): # 接收客户端请求数据 data = request.get_json()