sgd_experimental的使用方法
时间: 2023-05-30 17:02:05 浏览: 118
SGD (Stochastic Gradient Descent)是一种常用的优化方法,用于训练机器学习模型。sgd_experimental是MXNet的一个实验性功能,用于加速SGD的收敛速度和稳定性。
以下是sgd_experimental的使用方法:
1. 导入相关包
```python
import mxnet as mx
from mxnet import gluon
from mxnet.gluon import nn
from mxnet import autograd
```
2. 定义模型
```python
net = nn.Sequential()
net.add(nn.Dense(128, activation='relu'))
net.add(nn.Dense(64, activation='relu'))
net.add(nn.Dense(10))
```
3. 初始化SGD优化器
```python
optimizer = mx.optimizer.SGD(momentum=0.9, wd=0.001, learning_rate=0.1, rescale_grad=1.0/128)
optimizer = mx.optimizer.sgd_experimental.SGDEx(optimizer)
```
4. 定义损失函数
```python
loss_fn = gluon.loss.SoftmaxCrossEntropyLoss()
```
5. 定义训练函数
```python
def train(net, dataloader, loss_fn, optimizer, ctx):
cumulative_loss = 0.0
cumulative_accuracy = 0.0
total_samples = 0
for data, label in dataloader:
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
with autograd.record():
output = net(data)
loss = loss_fn(output, label)
loss.backward()
optimizer.update(data.shape[0])
cumulative_loss += mx.nd.sum(loss).asscalar()
cumulative_accuracy += mx.nd.sum(output.argmax(axis=1) == label).asscalar()
total_samples += label.size
return cumulative_loss / total_samples, cumulative_accuracy / total_samples
```
6. 训练模型
```python
ctx = mx.cpu()
epochs = 10
batch_size = 128
train_dataset = gluon.data.vision.datasets.MNIST(train=True)
train_dataloader = gluon.data.DataLoader(train_dataset.transform_first(transformer), batch_size=batch_size, shuffle=True)
for epoch in range(epochs):
train_loss, train_accuracy = train(net, train_dataloader, loss_fn, optimizer, ctx)
print('epoch: %d, train_loss: %.4f, train_accuracy: %.4f' % (epoch+1, train_loss, train_accuracy))
```
以上就是sgd_experimental的使用方法。需要注意的是,由于sgd_experimental是实验性功能,可能在未来版本中发生变化。建议在使用时查看最新的MXNet文档。
阅读全文