hive创建映射hbase外表

时间: 2023-10-24 22:17:32 浏览: 109
1. 确保HBase和Hive已经安装并正常运行。 2. 在Hive中创建外部表,指定存储位置为HBase表所在的命名空间和表名。 ``` CREATE EXTERNAL TABLE hbase_table(id STRING, name STRING, age INT) STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf:name,cf:age") TBLPROPERTIES ("hbase.table.name" = "namespace:table_name"); ``` 其中,`hbase.columns.mapping`指定了HBase表中列族和列的对应关系,`hbase.table.name`指定了HBase表的命名空间和表名。 3. 在Hive中查询外部表,即可读取HBase表中的数据。 ``` SELECT * FROM hbase_table; ``` 注意:在使用Hive操作HBase表时,需要保证HBase表和Hive表中的列名和数据类型一致。
相关问题

在hive中创建hbase对应的外表

在Hive中,可以通过使用CREATE EXTERNAL TABLE语句来创建HBase对应的外表。以下是一个示例: ``` CREATE EXTERNAL TABLE hbase_table ( column1 STRING, column2 INT, column3 DOUBLE ) STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ( "hbase.columns.mapping" = ":key,cf:column1,cf:column2,cf:column3" ) TBLPROPERTIES ( "hbase.table.name" = "hbase_table", "hbase.mapred.output.outputtable" = "hbase_table" ); ``` 其中,hbase_table是HBase表的名称,column1、column2、column3是HBase表中的列名。在SERDEPROPERTIES中,hbase.columns.mapping指定了HBase表中列名和Hive表中列名的映射关系。 需要注意的是,创建HBase对应的外表需要使用HBaseStorageHandler,因此需要先安装HBase和Hive的HBase插件。同时,需要将HBase的配置文件添加到Hive的classpath中。

hive映射hbase和直接放在hive

Hive可以通过Hive-HBase存储处理数据,也可以将数据直接存储在Hive中。如果数据量不大,可以直接将数据存储在Hive中,方便查询和管理。但是对于数据量较大的情况,为了提高查询效率,可以使用Hive-HBase存储方案。 使用Hive-HBase存储方案需要先将数据导入到HBase中,并在Hive中创建对应的外部表。这样,在查询时就可以利用HBase的快速读写性能来提高查询效率。 但需要注意的是,使用Hive-HBase存储方案需要对HBase有一定的了解和掌握,需要考虑数据的分布、扫描等问题,因此相对来说比较复杂。如果数据量不大,建议直接存储在Hive中,如果数据量较大并且需要快速查询,可以考虑使用Hive-HBase存储方案。
阅读全文

相关推荐

最新推荐

recommend-type

Hive数据导入HBase的方法.docx

首先,需要创建一个 Hive 表,关联到 HBase 表,并指定 Hive schema 到 HBase schema 的映射关系。例如: CREATE TABLE hive_hbase_table(key int, name String, age String) STORED BY 'org.apache.hadoop.hive....
recommend-type

详解hbase与hive数据同步

因此,只要创建Hive表时,与HBase中的表做了映射,表名和字段名可以不一致,之后无论在HBase中新增删除数据还是在Hive中,都会自动同步。如果在Hive里面是创建的外部表需要在HBase中先创建,内部表则会在HBase中自动...
recommend-type

基于CentOS7的Hadoop2.7.7集群部署+Hive+Zookeeper+hbase1.x+kylin2.5.0.doc

在构建大数据处理平台时,Hadoop、Hive、Zookeeper、HBase以及Kylin是关键组件,本教程将详述如何在CentOS7系统上基于Hadoop2.7.7搭建一个分布式集群,并集成Hive1.2.2、Zookeeper3.4.14、HBase1.x和Kylin2.5.0。...
recommend-type

大数据综合实验环境搭建(3个集群、Zookeeper、Hive、HBase)

大数据综合实验环境搭建(3个集群、Zookeeper、Hive、HBase) 本资源摘要信息主要对大数据综合实验环境搭建进行了详细的介绍,涵盖了 JDK 的安装和配置、免密码登录的设置、Zookeeper 的安装、Hive 和 HBase 的安装...
recommend-type

hadoop2.2 hbase0.96.2 hive 0.13.1整合部署

9. **Hive安装**:下载并解压Hive,配置Hive的环境变量,如`HIVE_HOME`,并配置Hive连接Hadoop和HBase的相关参数。 10. **测试验证**:启动所有服务,进行简单的数据插入和查询操作,确保整合成功。 这个整合部署...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"