无人机路径规划代码
时间: 2023-07-02 11:13:40 浏览: 92
以下是一个基于遗传算法的无人机路径规划的Python代码实现:
```python
import random
class Gene:
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
return f'({self.x}, {self.y})'
class Chromosome:
def __init__(self, genes):
self.genes = genes
self.fitness = 0
def __str__(self):
return ' -> '.join(str(g) for g in self.genes)
class GA:
def __init__(self, map, population_size, mutation_rate, elite_rate, crossover_rate, max_generation):
self.map = map
self.width = len(map[0])
self.height = len(map)
self.population_size = population_size
self.mutation_rate = mutation_rate
self.elite_rate = elite_rate
self.crossover_rate = crossover_rate
self.max_generation = max_generation
self.population = []
def generate_population(self):
for i in range(self.population_size):
genes = [Gene(random.randint(0, self.width-1), random.randint(0, self.height-1)) for j in range(self.width)]
chromosome = Chromosome(genes)
self.population.append(chromosome)
def evaluate_fitness(self):
for chromosome in self.population:
path_length = 0
for i in range(self.width-1):
x1, y1 = chromosome.genes[i].x, chromosome.genes[i].y
x2, y2 = chromosome.genes[i+1].x, chromosome.genes[i+1].y
path_length += abs(x1 - x2) + abs(y1 - y2)
chromosome.fitness = 1 / path_length
def select_elite(self):
elite_size = int(self.elite_rate * self.population_size)
elite = sorted(self.population, key=lambda c: c.fitness, reverse=True)[:elite_size]
return elite
def selection(self):
total_fitness = sum(c.fitness for c in self.population)
p = [c.fitness / total_fitness for c in self.population]
indices = random.choices(range(self.population_size), weights=p, k=self.population_size)
return [self.population[i] for i in indices]
def crossover(self, parent1, parent2):
if random.random() > self.crossover_rate:
return parent1, parent2
start = random.randint(0, self.width-1)
end = random.randint(start, self.width-1)
genes1 = [g for g in parent1.genes if g not in parent2.genes[start:end+1]]
genes2 = [g for g in parent2.genes if g not in parent1.genes[start:end+1]]
genes = genes1[:start] + parent2.genes[start:end+1] + genes1[start:]
child1 = Chromosome(genes)
genes = genes2[:start] + parent1.genes[start:end+1] + genes2[start:]
child2 = Chromosome(genes)
return child1, child2
def mutation(self, chromosome):
if random.random() > self.mutation_rate:
return chromosome
indices = random.sample(range(self.width), 2)
i, j = indices[0], indices[1]
chromosome.genes[i], chromosome.genes[j] = chromosome.genes[j], chromosome.genes[i]
return chromosome
def evolve(self):
self.generate_population()
for generation in range(self.max_generation):
self.evaluate_fitness()
elite = self.select_elite()
offspring = []
while len(offspring) < self.population_size - len(elite):
parents = random.sample(self.selection(), 2)
children = self.crossover(parents[0], parents[1])
offspring.extend(children)
offspring = [self.mutation(c) for c in offspring]
self.population = elite + offspring
best_chromosome = max(self.population, key=lambda c: c.fitness)
print(f'Generation {generation+1}: Best Path = {best_chromosome}, Fitness = {best_chromosome.fitness}')
```
这里的 `Gene` 类代表地图上的一个点,包含其坐标。 `Chromosome` 类代表一个无人机路径,由多个 `Gene` 组成。 `GA` 类中的 `generate_population` 方法用于初始化种群,`evaluate_fitness` 方法用于评估每个个体的适应度,`select_elite` 方法用于选择精英个体,`selection` 方法用于选择父代,`crossover` 方法用于交叉产生后代,`mutation` 方法用于变异产生新个体,`evolve` 方法实现了遗传算法的主要逻辑,包括选择、交叉、变异等步骤,通过不断迭代,得到最优的无人机路径。
阅读全文