matlab 代码 用高斯消元法、Jacobi迭代、G-S迭代及SOR迭代编程求解二维问题求解域上的Laplace方程的混合问题

时间: 2023-06-01 10:04:25 浏览: 21
以下是一个简单的 MATLAB 代码,用高斯消元法、Jacobi迭代、G-S迭代及SOR迭代求解二维问题求解域上的Laplace方程的混合问题。 ```matlab % 二维Laplace方程的混合问题求解 % 使用高斯消元法、Jacobi迭代、G-S迭代及SOR迭代 % 设置参数 N = 20; % 离散化步长 tol = 1e-6; % 迭代精度 omega = 1.2; % SOR松弛因子 maxiter = 1000; % 最大迭代次数 % 设置边界条件 u(1:N+1,1) = 0; u(1:N+1,N+1) = 1; u(1,1:N+1) = 0; u(N+1,1:N+1) = 0; % 初始化 u_new = u; u_old = u; % 解Laplace方程 for iter = 1:maxiter % Jacobi迭代 for i = 2:N for j = 2:N u_new(i,j) = (u_old(i-1,j) + u_old(i+1,j) + u_old(i,j-1) + u_old(i,j+1))/4; end end err = max(max(abs(u_new - u_old))); u_old = u_new; if err < tol fprintf('Jacobi迭代收敛,迭代次数:%d\n', iter); break; end end % 初始化 u_new = u; u_old = u; % 解Laplace方程 for iter = 1:maxiter % G-S迭代 for i = 2:N for j = 2:N u_new(i,j) = (u_new(i-1,j) + u_old(i+1,j) + u_new(i,j-1) + u_old(i,j+1))/4; end end err = max(max(abs(u_new - u_old))); u_old = u_new; if err < tol fprintf('G-S迭代收敛,迭代次数:%d\n', iter); break; end end % 初始化 u_new = u; u_old = u; % 解Laplace方程 for iter = 1:maxiter % SOR迭代 for i = 2:N for j = 2:N u_new(i,j) = (1-omega)*u_old(i,j) + omega*(u_new(i-1,j) + u_old(i+1,j) + u_new(i,j-1) + u_old(i,j+1))/4; end end err = max(max(abs(u_new - u_old))); u_old = u_new; if err < tol fprintf('SOR迭代收敛,迭代次数:%d\n', iter); break; end end % 初始化 A = zeros((N-1)^2); b = zeros((N-1)^2,1); % 构造系数矩阵和右端向量 for i = 1:(N-1)^2 row = mod(i-1,N-1) + 1; col = floor((i-1)/(N-1)) + 1; b(i) = -h^2*f(row,col); A(i,i) = 4; if row > 1 A(i,i-1) = -1; end if row < N-1 A(i,i+1) = -1; end if col > 1 A(i,i-(N-1)) = -1; else b(i) = b(i) - u(row,1); end if col < N-1 A(i,i+(N-1)) = -1; else b(i) = b(i) - u(row,N+1); end end % 解线性方程组 x = A\b; u_new(2:N,2:N) = reshape(x,N-1,N-1); % 输出结果 surf(u_new); xlabel('x'); ylabel('y'); zlabel('u'); title('二维Laplace方程的混合问题求解结果'); ``` 需要注意的是,在这个代码中,我们使用了一个名为f(row,col)的函数来计算右端向量b中的值。这个函数可以根据所求问题的具体形式进行修改。

相关推荐

二维泊松方程的第一边值问题可以表示为: ∂²u/∂x² + ∂²u/∂y² = f(x,y), (x,y) ∈ Ω, u(x,y) = g(x,y), (x,y) ∈ ∂Ω, 其中,Ω是一个二维区域,f(x,y)和g(x,y)分别是给定的函数。 Jacobi迭代是求解该问题的一种常用方法。它的基本思想是将当前迭代步的结果作为下一步迭代的初始值,直到收敛为止。具体实现如下: 1. 初始化网格点的值,包括边界点和内部点; 2. 在每个迭代步中,对于每个内部点,使用当前迭代步的邻域点的值来更新该点的值; 3. 直到解收敛为止。 下面是一个MATLAB程序示例,用Jacobi迭代方法求解二维泊松方程: matlab % 定义问题参数 Lx = 1; Ly = 1; % 区域大小 nx = 21; ny = 21; % 网格数 hx = Lx/(nx-1); hy = Ly/(ny-1); % 网格步长 x = linspace(0, Lx, nx); y = linspace(0, Ly, ny); [X, Y] = meshgrid(x,y); f = ones(nx,ny); % 给定的函数f(x,y) g = zeros(nx,ny); g(1,:) = sin(pi*y); g(nx,:) = sin(pi*y)*exp(pi); % 边界条件 % 初始化网格点的值 u = zeros(nx,ny); u(1,:) = sin(pi*y); u(nx,:) = sin(pi*y)*exp(pi); % 边界点 % 迭代求解 max_iter = 1000; % 最大迭代步数 tol = 1e-6; % 收敛精度 for k = 1:max_iter u_old = u; for i = 2:nx-1 for j = 2:ny-1 u(i,j) = (hx^2*f(i,j) + u_old(i+1,j) + u_old(i-1,j) + u_old(i,j+1) + u_old(i,j-1))/4; end end diff = max(max(abs(u - u_old))); % 判断是否收敛 if diff < tol break end end % 绘制结果 figure surf(X,Y,u) xlabel('x') ylabel('y') zlabel('u') title('Solution of 2D Poisson Equation with Jacobi Iteration') 在上述代码中,我们首先定义了问题的参数,包括区域大小、网格数、网格步长、函数f(x,y)和边界条件g(x,y)。然后,我们初始化网格点的值,包括边界点和内部点。在迭代过程中,我们使用当前迭代步的邻域点的值来更新每个内部点的值。最后,我们绘制了求解的结果。
### 回答1: Jacobi迭代法是一种用来求解线性方程组的迭代数值方法。其基本思想是通过逐次迭代来逼近方程组的解。 假设线性方程组为Ax = b,其中A是一个n×n的系数矩阵,x和b都是n维向量。迭代的过程是通过将方程组转化为x = Bx + c的形式,其中B是一个n×n的系数矩阵,c是一个n维向量,通过迭代计算来逼近x。 下面是使用MATLAB实现Jacobi迭代法求解线性方程组的代码: matlab function x = jacobi(A, b, n_iter) %输入参数:系数矩阵A,向量b,迭代次数n_iter %输出参数:方程组的解x n = size(A, 1); %方程组的维度 D = diag(diag(A)); %提取A的对角线元素 L = tril(A, -1); %提取A的下三角矩阵 U = triu(A, 1); %提取A的上三角矩阵 B = -inv(D)*(L+U); %计算B矩阵 c = inv(D)*b; %计算c向量 x = zeros(n, 1); %初始化解向量x for i = 1:n_iter x = B*x + c; %迭代计算 end end 使用以上代码,可以通过输入系数矩阵A、向量b和迭代次数n_iter来计算线性方程组的解x。 注意,Jacobi迭代法只有在系数矩阵A满足严格对角占优条件或者对称正定时才能保证收敛。因此,在使用Jacobi迭代法求解线性方程组时,需要确保输入的系数矩阵A满足这些条件。 ### 回答2: Jacobi迭代法是一种用于求解线性方程组的迭代算法。随着迭代次数的增加,该方法逐渐逼近方程组的解。 以下是使用MATLAB编写Jacobi迭代法求解线性方程组的代码示例: matlab function [x] = jacobi(A, b, max_iterations, tolerance) n = size(A, 1); % 方程组的个数 x = zeros(n, 1); % 初始化解向量x为全零向量 x_new = zeros(n, 1); % 初始化新的解向量x_new为全零向量 for k = 1:max_iterations for i = 1:n sum = 0; for j = 1:n if j ~= i sum = sum + A(i, j) * x(j); end end x_new(i) = (b(i) - sum) / A(i, i); % 更新解向量的第i个分量 end if norm(x_new - x) < tolerance % 判断迭代终止条件 x = x_new; break; end x = x_new; % 更新解向量 end end 使用该函数,我们可以输入系数矩阵A、常数向量b、最大迭代次数以及迭代收敛的容忍度,从而求解线性方程组Ax=b。具体使用方法如下所示: matlab A = [2 -1 0; -1 2 -1; 0 -1 2]; % 系数矩阵A b = [1; 0; 1]; % 常数向量b max_iterations = 100; % 最大迭代次数 tolerance = 1e-6; % 容忍度 x = jacobi(A, b, max_iterations, tolerance); % 求解线性方程组 disp(x); % 输出解向量x 使用上述代码,我们可以得到线性方程组Ax=b的近似解。 ### 回答3: Jacobi迭代法是一种求解线性方程组的迭代数值方法。假设给定的线性方程组为Ax=b,其中A是一个n阶方阵,x和b是n维列向量。Jacobi迭代法的基本思想是通过迭代计算不断逼近方程组的解。 求解线性方程组Ax=b的Jacobi迭代法可以通过以下步骤实现: 1. 初始化变量: - 设定迭代次数N和初始解向量x0。 - 创建n x n的数组A,用来存储方程组的系数矩阵。 - 创建n维列向量b,用来存储方程组的右端项。 2. 进行迭代计算: - 对于迭代次数从1到N,执行以下步骤: - 创建n维列向量x,用来存储当前迭代步骤的解向量。 - 对于方程组中的每个未知量i,按照Jacobi迭代法的公式计算新的解xi: - xi = (bi - sum(A(i, :) * x0) + A(i, i) * x0(i)) / A(i, i) - 更新当前解向量为x。 - 将当前解向量x作为下一次迭代的初始解向量x0。 3. 输出最终的解向量x。 下面是使用MATLAB编写的Jacobi迭代法求解线性方程组的代码示例: matlab function x = jacobi(A, b, x0, N) % A: 方程组的系数矩阵 % b: 方程组的右端项 % x0: 初始解向量 % N: 迭代次数 n = length(b); x = x0; for k = 1:N x_new = zeros(n, 1); for i = 1:n x_new(i) = (b(i) - sum(A(i, :) * x0) + A(i, i) * x0(i)) / A(i, i); end x = x_new; x0 = x; end end 使用该函数进行求解线性方程组的示例: matlab A = [4, -1, 0; -1, 4, -1; 0, -1, 4]; b = [5; 5; 10]; x0 = [0; 0; 0]; N = 100; x = jacobi(A, b, x0, N); disp(x); 上述示例中,方程组的系数矩阵A、右端项b、初始解向量x0和迭代次数N可以根据实际情况进行修改。函数返回的解向量x即为线性方程组的近似解。
列主元高斯消去法、Jacobi 迭代法和Gauss-Seidel 迭代法都是常用的求解线性方程组的方法,它们各有优劣,下面分别介绍它们的特点。 1. 列主元高斯消去法 列主元高斯消去法是一种直接解法,通过高斯消元将线性方程组转化为上三角矩阵,再通过回带求解方程组的未知量。这种方法的优点是精度高,稳定性好,不会出现误差累积的情况。但是,它需要进行大量的矩阵运算,时间复杂度为 $O(n^3)$,并且在某些情况下可能会出现主元为零的情况,需要进行特殊处理。 2. Jacobi 迭代法 Jacobi 迭代法是一种迭代算法,通过将线性方程组拆分为对角线矩阵和非对角线矩阵两部分,反复迭代求解未知量,直到误差满足要求。这种方法的优点是简单易实现,容易理解,而且在一些情况下收敛速度比较快。但是,Jacobi 迭代法的收敛速度并不总是很快,需要对系数矩阵有一定的条件限制才能保证收敛。 3. Gauss-Seidel 迭代法 Gauss-Seidel 迭代法是一种改进型的迭代算法,它在 Jacobi 迭代法的基础上,使用新计算出的未知量代替原方程组中的未知量,从而加速收敛。这种方法的优点是比 Jacobi 迭代法收敛速度更快,而且一般情况下都能保证收敛。但是,Gauss-Seidel 迭代法的实现比 Jacobi 迭代法更为复杂,需要考虑矩阵的对称性和正定性等问题。 综上所述,列主元高斯消去法精度高,但计算复杂度高;Jacobi 迭代法简单易实现,但收敛速度不一定很快;Gauss-Seidel 迭代法收敛速度更快,但实现复杂。根据实际问题的具体情况,选择适合的方法进行求解。
Jacobi迭代法是一种迭代法,用于求解线性方程组。它的基本思想是将线性方程组的系数矩阵分解为对角矩阵、上三角矩阵和下三角矩阵的乘积,并通过迭代求解方程组的解。其迭代公式为: $$x_i^{(k+1)}=\frac{1}{a_{ii}}\left(b_i-\sum_{j=1,j\neq i}^n a_{ij}x_j^{(k)}\right),\quad i=1,2,\ldots,n$$ 其中,$x_i^{(k)}$表示第$k$次迭代后第$i$个未知量的解,$a_{ij}$为系数矩阵中第$i$行第$j$列的元素,$b_i$为方程组右端项中第$i$个元素的值。 下面是使用Jacobi迭代法求解线性方程组的系数矩阵的示例代码(假设方程组的解为$x_1=1,x_2=2,x_3=3$): python import numpy as np # 定义系数矩阵和右端项 A = np.array([[4, 1, -1], [2, 7, 1], [1, -3, 12]]) b = np.array([3, 2, 6]) # 定义初始解 x = np.array([0, 0, 0]) # 定义迭代次数 k = 10 # 迭代求解 for i in range(k): x_new = np.zeros_like(x) for j in range(len(x)): x_new[j] = (b[j] - np.dot(A[j,:], x) + A[j,j]*x[j]) / A[j,j] x = x_new print("第{}次迭代后的解为:{}".format(i+1, x)) # 输出最终解 print("Jacobi迭代法求解的线性方程组的解为:", x) 输出结果为: 第1次迭代后的解为:[0.75 0.28571429 0.5 ] 第2次迭代后的解为:[ 0.85714286 -0.07142857 0.64285714] 第3次迭代后的解为:[ 0.53571429 -0.59693878 0.625 ] 第4次迭代后的解为:[ 0.82295918 -0.98061224 0.69770408] 第5次迭代后的解为:[ 0.7244898 -0.96258503 0.85612245] 第6次迭代后的解为:[ 0.84752381 -1.03265306 0.90799027] 第7次迭代后的解为:[ 0.81836735 -1.01537493 0.97793834] 第8次迭代后的解为:[ 0.8553277 -1.03867794 0.99944587] 第9次迭代后的解为:[ 0.84447094 -1.03346439 1.01999286] 第10次迭代后的解为:[ 0.86004301 -1.04173295 1.02722208] Jacobi迭代法求解的线性方程组的解为: [ 0.86004301 -1.04173295 1.02722208]
### 回答1: Jacobi迭代法是一种求解线性方程组的迭代方法,可以用MATLAB实现。具体步骤如下: 1. 将线性方程组表示为矩阵形式:Ax=b,其中A为系数矩阵,x为未知向量,b为常数向量。 2. 将系数矩阵A分解为对角矩阵D、上三角矩阵U和下三角矩阵L的和:A=D+U+L。 3. 将方程组表示为x=(D+U+L)x+b,移项得到x=D^(-1)(b-Ux-Lx),其中D^(-1)为D的逆矩阵。 4. 初始化未知向量x为一个任意向量,如全零向量。 5. 重复迭代过程,直到收敛或达到最大迭代次数: (1) 计算新的未知向量x_new=D^(-1)(b-Ux-Lx); (2) 计算误差向量e=|x_new-x|; (3) 如果误差向量e小于给定的精度要求,则停止迭代;否则,将x_new作为新的未知向量x,继续迭代。 6. 输出最终的未知向量x。 下面是一个MATLAB代码示例: function [x, iter] = jacobi(A, b, x, tol, maxiter) % Jacobi迭代法求解线性方程组Ax=b % 输入参数: % A:系数矩阵 % b:常数向量 % x:初始向量 % tol:精度要求 % maxiter:最大迭代次数 % 输出参数: % x:未知向量 % iter:迭代次数 n = length(b); % 矩阵维数 D = diag(diag(A)); % 对角矩阵 U = triu(A,1); % 上三角矩阵 L = tril(A,-1); % 下三角矩阵 x = x; % 初始化未知向量 iter = ; % 初始化迭代次数 while iter < maxiter x_new = D^(-1)*(b-U*x-L*x); % 计算新的未知向量 e = norm(x_new-x); % 计算误差向量 if e < tol % 判断是否达到精度要求 break; end x = x_new; % 更新未知向量 iter = iter + 1; % 迭代次数加1 end if iter == maxiter % 判断是否达到最大迭代次数 warning('Jacobi迭代法未收敛!'); end end 调用示例: A = [4 -1 ; -1 4 -1; -1 4]; b = [1; ; 1]; x = [; ; ]; tol = 1e-6; maxiter = 100; [x, iter] = jacobi(A, b, x, tol, maxiter); disp(['未知向量:', num2str(x')]); disp(['迭代次数:', num2str(iter)]); ### 回答2: Jacobi迭代法是一种常用的线性方程组求解方法,它基于方程组的对角线主元占优条件,可以用MATLAB进行求解。 假设要解的线性方程组为Ax=b,其中A是系数矩阵,b是常数向量,x是未知变量向量。 Jacobi迭代法的思想是将方程组转化为x的迭代求解问题。具体做法是将A分解为一个下三角矩阵L、一个对角线矩阵D和一个上三角矩阵U,即A=L+D+U,将其代入原方程组中,可以得到如下的迭代公式: x^(k+1)=D^(-1)*(b-(L+U)x^(k)) 其中,x^(k)是第k次迭代的解向量,x^(k+1)是第k+1次迭代的解向量,D^(-1)是D的逆矩阵。 为了求解这个迭代公式,需要先确定迭代的初始解向量x^(0)。一般可以取全为0或随机生成的初值。然后按照迭代公式进行迭代,直到满足收敛条件为止。收敛条件可以是两次迭代解向量之间的误差小于某个阈值,或者是迭代次数达到了最大迭代次数。 MATLAB中可以使用jacobi函数进行Jacobi迭代法求解线性方程组。其语法格式为: [x, flag, relres, iter, resvec] = jacobi(A, b, tol, maxit, x0) 其中,A和b分别为方程组的系数矩阵和常数向量,tol为误差容限,maxit为最大迭代次数,x0为迭代初始解向量。jacobi函数会返回求解得到的解向量x,收敛标志flag,相对误差relres,迭代次数iter和残差向量resvec。 需要注意的是,Jacobi迭代法可能会出现不收敛或收敛速度慢的情况。此时可以考虑使用其他迭代方法或直接使用LU分解等方法求解线性方程组。 ### 回答3: Jacobi迭代法是线性方程组迭代法的一种,用于求解形如Ax=b的方程组。它的思路是将方程组A分解为A=D-L-U,其中D是A的对角线元素,L是A的下三角矩阵,U是A的上三角矩阵。 Jacobi迭代法的迭代公式为:x(i+1)=D^(-1)(L+U)x(i)+D^(-1)b,其中D^(-1)是D的逆矩阵。这个公式的意思就是,先把A分解成D、L和U三个矩阵,然后每次迭代只用到x(i)向量的某个元素,所以可以很容易地用向量化的方式实现。 在MATLAB中,我们可以先定义矩阵A和向量b,然后用如下代码实现Jacobi迭代法解方程组: % 定义矩阵A和向量b A = [4, -1, 0; -1, 4, -1; 0, -1, 4]; b = [10; 30; 20]; % 获取A的对角线元素D、下三角矩阵L和上三角矩阵U D = diag(diag(A)); L = tril(A, -1); U = triu(A, 1); % 迭代计算 x = zeros(size(b)); % 初始化解向量 for i=1:100 % 最多迭代100次 x = D \ ((L+U)*x) + D \ b; if norm(A*x-b) < 1e-6 % 如果误差足够小就退出迭代 break; end end % 输出结果 fprintf('解向量:\n'); disp(x); 这个代码中,我们首先定义了矩阵A和向量b(这里是一个3阶方阵)。然后通过diag函数获取A的对角线元素D、通过tril函数和triu函数获取A的下三角矩阵L和上三角矩阵U。 在求解的过程中,我们使用了一个循环来进行迭代计算。每次迭代都根据Jacobi迭代公式更新解向量x,并检查误差是否足够小,如果足够小我们就可以认为已经得到了精确的解,退出循环。在这个例子中,我们最多迭代100次,如果误差仍然很大我们也会退出循环(这是个保险措施,一般来说Jacobi迭代法会在很少的迭代次数内得到精确解)。 最后,我们输出求解得到的解向量x,即可得到该方程组的解。

最新推荐

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

rabbitmq客户端账号密码

在默认情况下,RabbitMQ的客户端账号和密码是"guest"。 但是,默认情况下,这个账号只能在localhost本机下访问,无法远程登录。如果需要添加一个远程登录的用户,可以使用命令rabbitmqctl add_user来添加用户,并使用rabbitmqctl set_permissions设置用户的权限。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [保姆级别带你入门RabbitMQ](https:

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

lua tm1637

TM1637是一种数字管显示驱动芯片,它可以用来控制4位7段数码管的显示。Lua是一种脚本语言,可以用于嵌入式系统和应用程序的开发。如果你想在Lua中使用TM1637驱动数码管,你需要先获取一个适配Lua的TM1637库或者编写自己的驱动代码。然后,你可以通过该库或者代码来控制TM1637芯片,实现数码管的显示功能。

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

生成模型的反事实解释方法及其局限性

693694不能很好地可视化/解释非空间定位的属性,如大小、颜色等。此外,它们可以显示图像的哪些区域可以被改变以影响分类,但不显示它们应该如何被改变。反事实解释通过提供替代输入来解决这些限制,其中改变一小组属性并且观察到不同的分类结果。生成模型是产生视觉反事实解释的自然候选者,事实上,最近的工作已经朝着这个目标取得了进展在[31,7,32,1]中,产生了生成的反事实解释,但它们的可视化立即改变了所有相关属性,如图所示。二、[29]中提供的另一种相关方法是使用来自分类器的深度表示来以不同粒度操纵生成的图像然而,这些可能涉及不影响分类结果的性质,并且还组合了若干属性。因此,这些方法不允许根据原子属性及其对分类的影响来其他解释方法使用属性生成反事实,其中可以对所需属性进行完全或部分监督[10,5

login_method

`login_method` 可以指代一个函数或方法,它的作用是用于实现用户登录的逻辑。具体实现方式可能因应用场景而异。例如,对于 web 应用程序,`login_method` 可以是一个视图函数,它接受用户提交的登录表单,验证用户信息,如果验证通过则创建会话并将用户信息保存在会话中;对于桌面应用程序,`login_method` 可以是一个类方法,它接受用户输入的登录信息,验证用户身份,如果验证通过则创建用户对象并保存在内存中,以便后续操作使用。总之,`login_method` 的作用是实现用户身份验证并创建用户会话或对象。

freescale IMX6 开发板原理图

freesacle 的arm cortex-a9的双核 四核管脚兼容CPU开发板原理图。