这里的[Q, R] = qr_givens(H)是什么matlab代码
时间: 2024-03-25 13:37:16 浏览: 62
以下是一个简单的Matlab实现示例:
```matlab
function [Q, R] = qr_givens(H)
% H: 待分解的矩阵
% Q: 正交矩阵
% R: 上三角矩阵
[m, n] = size(H);
Q = eye(m);
R = H;
for j = 1:n
for i = m:-1:j+1
% 计算Givens旋转矩阵
[c, s] = givens_rotation(R(i-1,j), R(i,j));
G = eye(m);
G(i-1:i, i-1:i) = [c, s; -s, c];
% 更新R和Q
R = G' * R;
Q = Q * G;
end
end
end
function [c, s] = givens_rotation(a, b)
% 计算Givens旋转矩阵的参数c和s
if b == 0
c = 1;
s = 0;
elseif abs(b) > abs(a)
t = -a / b;
s = 1 / sqrt(1 + t^2);
c = s * t;
else
t = -b / a;
c = 1 / sqrt(1 + t^2);
s = c * t;
end
end
```
这个实现是基于Givens旋转方法的QR分解算法。输入一个矩阵H,输出正交矩阵Q和上三角矩阵R。
相关问题
matlab givens qr分解代码
The Givens QR factorization is a method for computing the QR decomposition of a matrix using Givens rotations. In Matlab, the `qr` function can be used to compute the QR factorization, but it uses a different algorithm that is more efficient for dense matrices. However, here is an example code for computing the Givens QR factorization using planerot function:
```
function [Q, R] = givens_qr(A)
% Computes the QR factorization of matrix A using Givens rotations
[m, n] = size(A);
R = A;
% Initialize Q as an identity matrix
Q = eye(m);
% Compute the Givens QR factorization
for j = 1:n
for i = m:-1:(j+1)
% Compute the Givens rotation matrix
[c, s] = planerot(R(i-1,j), R(i,j));
G = eye(m);
G(i-1:i, i-1:i) = [c -s; s c];
% Apply the Givens rotation to R and Q
R = G' * R;
Q = Q * G;
end
end
```
This code computes the Givens QR factorization of a matrix `A` using nested loops to apply Givens rotations to the input matrix `A` to obtain the upper triangular matrix `R`, and accumulate the product of the Givens rotation matrices into an orthogonal matrix `Q`. The `planerot` function is used to compute the Givens rotation matrices. Note that this implementation is not optimized for efficiency and may not be suitable for large matrices.
givens矩阵的qr分解matlab的代码怎么写
以下是givens矩阵的qr分解matlab的代码:
function [Q,R] = givens_qr(A)
[m,n] = size(A);
Q = eye(m);
R = A;
for j = 1:n
for i = m:-1:(j+1)
if R(i,j) ~= 0
[c,s] = givens(R(j,j),R(i,j));
G = eye(m);
G([j,i],[j,i]) = [c -s; s c];
R = G'*R;
Q = Q*G;
end
end
end
end
function [c,s] = givens(a,b)
if b == 0
c = 1;
s = 0;
elseif abs(b) > abs(a)
t = -a/b;
s = 1/sqrt(1+t^2);
c = s*t;
else
t = -b/a;
c = 1/sqrt(1+t^2);
s = c*t;
end
end
阅读全文