import numpy as np coding: utf-8 n = 770 #数据数量 max_val = 4000 # 最大值 min_val = 2606 # 最小值 avg_val = 3300 # 平均值 half_n = n // 2 # 计算数据数量的一半,取整 # 生成前半部分数据 descending_data = np.linspace(max_val, min_val, half_n) # 生成后半部分数据 ascending_data = np.linspace(min_val, max_val, half_n) # 合并数据 data = np.concatenate((descending_data, ascending_data)) # 添加随机噪声,使平均值达到设定值 data += np.random.normal(avg_val - np.mean(data), 100, n) # 随机打乱数据 np.random.shuffle(data) print(data)
时间: 2023-12-06 22:42:11 浏览: 125
这段代码使用了numpy库,生成了一个具有一定规律的随机数据,并添加了随机噪声。具体步骤如下:
1. 定义了数据数量n、最大值max_val、最小值min_val、平均值avg_val等参数;
2. 计算出数据数量的一半half_n;
3. 使用np.linspace()函数生成前半部分数据descending_data,该函数会生成一定数量的数据,使得数据从指定起始值逐渐变化到指定终止值;
4. 使用np.linspace()函数生成后半部分数据ascending_data,与descending_data相反,从指定终止值逐渐变化到指定起始值;
5. 使用np.concatenate()函数将descending_data和ascending_data合并成一个数据data;
6. 使用np.random.normal()函数为data添加随机噪声,使平均值达到设定值avg_val,同时保持标准差为100;
7. 使用np.random.shuffle()函数随机打乱数据data;
8. 最后输出打乱后的data。
这段代码可以用于生成一些测试数据,用于测试数据分析或机器学习模型的性能。
阅读全文