蚁群优化算法matlab代码,带测试函数
时间: 2023-07-08 16:49:49 浏览: 241
基于Matlab实现的蚁群算法(带测试函数)
3星 · 编辑精心推荐
以下是蚁群优化算法的 Matlab 代码,同时附带一个测试函数 Sphere Function:
```matlab
% Sphere Function
function f = sphere(x)
% x: n-dimensional vector
f = sum(x.^2);
% Ant Colony Optimization Algorithm
function [x, fval] = ant_colony_optimization(n, L, m, q0, alpha, beta, rho, tau0, tmax)
% n: dimension of the search space
% L: search space limit
% m: number of ants
% q0: probability of selecting the best known solution
% alpha: importance of pheromone trail
% beta: importance of heuristic information
% rho: pheromone trail persistence factor
% tau0: initial pheromone trail
% tmax: maximum number of iterations
% Initialize pheromone trail
tau = tau0 * ones(n+1, L+1);
% Initialize best solution
x_best = rand(1, n) * 2 * L - L;
f_best = sphere(x_best);
for t = 1:tmax
% Initialize ant positions
x = rand(m, n) * 2 * L - L;
f = zeros(m, 1);
% Ant movement
for i = 1:m
for j = 1:n
% Calculate transition probability
p = tau(j, round(x(i,j)+L)+1).^alpha .* (1./abs(x(i,j)-x_best(j))).^beta;
p = p / sum(p);
% Choose next position
if rand < q0
[~, idx] = max(p);
else
idx = roulette_wheel(p);
end
x(i,j) = x(i,j) + idx - L - 1;
end
% Evaluate solution
f(i) = sphere(x(i,:));
% Update best known solution
if f(i) < f_best
x_best = x(i,:);
f_best = f(i);
end
end
% Update pheromone trail
delta_tau = zeros(n+1, L+1);
for i = 1:m
for j = 1:n
delta_tau(j, round(x(i,j)+L)+1) = delta_tau(j, round(x(i,j)+L)+1) + 1/f(i);
end
delta_tau(n+1, round(f(i))+1) = delta_tau(n+1, round(f(i))+1) + 1/f(i);
end
tau = (1-rho) * tau + delta_tau;
end
% Return best solution
x = x_best;
fval = f_best;
% Roulette wheel selection
function idx = roulette_wheel(p)
r = rand;
c = cumsum(p);
idx = find(r <= c, 1, 'first');
% Example usage
n = 10;
L = 10;
m = 50;
q0 = 0.9;
alpha = 1;
beta = 2;
rho = 0.5;
tau0 = 0.1;
tmax = 100;
[x, fval] = ant_colony_optimization(n, L, m, q0, alpha, beta, rho, tau0, tmax);
```
阅读全文